Characteristics and Weak solutions

Exercise 1
Consider the partial differential equation

Opu(z,t) + xdzu(x,t) = 0.

Find curves z(¢) along which any solution must be constant. Show that every (z,t) € R x R lies on such a curve.
Find a solution for the initial values ug(z) = cos(z).

Solution 1
From the equation, we can tell that

Ozu(z,t) AT

Opu(z, t) 1)
At every point (z,t), the solution must be constant if we move in direction (z,1). A curve z(t) must therefore obey
the ordinary differential equation

Opx(t) = x(t), x(0) = xo.

The solution is z(t) = zq exp(t).
Given any (z,t), we see that (x,t) lies on the characteristic starting at zo = x exp(—t).
Since u is constant along each characteristic, it follows that

u(z,t) =u(z-e " 0) =uo(z-e")
If the initial values are ug(x) = sin(z), we thus find the solution by:
u(z,t) =sin (z-e7").

Exercise 2
Suppose that u is the density of a quantity over the real line. We assume that its velocity over the real line is given
by

v(z,t) = u(z,t)>.
Describe the change of the integral of u over a subinterval [x1, 5] in terms of the velocity v and w itself. Use the
fundamental theorem of calculus to derive a conservation law, and find its characteristics. Discuss the similarity to
Burgers’ equation, and how this example can be generalized.

Solution 2
We consider the time-dependent integral
x2
M(t) = / (e, t)da.
1

The influx/outflux of the endpoint is described by the velocity
T2
OM(t) = 3t/ u(z, t)de = u(xy, t)3u(z,t) — u(zo, t)3u(ze, t) = u(zy, t)* — u(zy, t)*.
z1
Via the fundamental theorem of calculus,

8t/ u(z, t)dx = —/ Opu(z, t)*da.

1



We take the time-derivative under the integral. If we take the intervals infinitesimally small, then we derive the
conservation law
du(z,t) + 0, (u(z, t)*) =0.
The solution is constant along the lines in directions (4u3,1). The characteristics have the form
O (t) = 4u(z,t)>.
This has the general form of a conservation law with flux f(u) = u*. We get Burgers’ equation if we replace the

exponent by 2, and we get a transport equation if we replace the exponent by 1.

Exercise 3
An example for a nonlinear wave equation is

OnE = 0, (|0, E[P20,E)
where p > 1. Reformulate this as a system of conservation laws.

Solution 3
Similar as in the lecture, we introduce the variables v = 0;F and s = 0sF, which represent the velocity and the
slope. The system of conservation laws consists of

8t8 = 8.7;”) 8tU = aaL (Sp_Qs) .

In matrix form, we therefore find

Exercise 4
Consider the transport equation
Opu(x,t) + 0z (a(t)u(x,t)) =0

where the velocity depends only one the time variable ¢. Find the characteristics and show that the characteristics
do not intersect.

Suppose that u describes the density of cars along a one-dimensional street. What sort of traffic flow does this
conservation law describe? This simple PDE is only for practice purposes.

Solution 4
The characteristic originating at x( satisfies

Ox(t) = a(t), x(0) = xo.
Consequently, it is given by
t
x(t) = xo +/ a(s)ds,
0

Suppose that zo(t) and x1(t) are two characteristics that start at zo and x1, respectively, and suppose that 1 > xo.
We then have

x21(t) — zo(t) = 21 Jr/o a(s)ds — xo +/0 a(s)ds = x1 — xp.

So the distance between x1(t) and xo(t) remains constant over time.

If we interpret this as a model for traffic flow, then it describes a flow of cars where everyone drives exactly the
same speed at every time, but the speed may change over time (and everyone will obey the speed rule). Obviously,
this is quite only a simplified traffic flow model.

Exercise 5
(Hard) Consider the conservation law (transport equation)

Opu(x,t) + 0y (a(x)u(x,t)) =0
We have seen that the characteristics satisfy the following ordinary differential equation with initial values:
Opx(t) = a(x(t)), =(0) = xo.

Show that the characteristics do not intersect if the velocity is always positive. !

1This is often noted casually in the literature, but can be proven rigorously.



Solution 5
Suppose that zg and z; are two points with xg < 1. We write x¢(t) and z1(t) for the two associated characteristics.
They satisfy the equations

xo(t) = xo + /Ot zy(s)ds = wo + /Ot a(zo(s))ds, x1(t) = a1 + /Ot 21 (s)ds = x1 + /Ot a(z1(s))ds.

If the two characteristics intersect, then there is some T such that xo(T) = z1(T). At the intersection time 7" we
then must have

T T
Zo +/0 a(zo(s))ds = xo(T) = 21(T) = =1 +/0 a(z1(s))ds.

Since the velocity is always positive, zo(t) must have have passed x; at some time ty > 0, where we have ¢ (tg) = 1.
We split the first integral

T

xo + /Oto a(xo(s))ds+/T a(xo(s))ds = z1 +/ a(z1(s))ds.

to 0

17%o 0T7t0 a(xz1(s))ds

Here, the first underbraced integral uses x¢(0) = o and xo(t9) = x1. The second underbraced integral uses that
the characteristic of xo(t) follows the same trajectory of x1(¢) (but with a time delay). So this becomes

o+ /O T on(s))ds = 2y 4 /0 " (@ (s))ds.

But this cannot be, because a is always positive.



