
Exercise Set 9: Linear Systems

Exercise 1
This exercise pertains to Godunov’s method for linear systems with constant coefficients,

qt +Aqx = 0 . (1)

On linear systems, Godunov’s method reduces to a generalization of the upwind method where the numerical flux
is given by the following equivalent expressions

F (Ql, Qr) = AQl +A− (Qr −Ql) (2)

= AQr −A+ (Qr −Ql) =
1

2
A (Qr +Ql)−

1

2
|A| (Qr −Ql) . (3)

Where |A| = A+ − A− and A± = SΛ±S−1. Here Λ+ and Λ− are diagonal matrices with non-negative and
non-positive entries, respectively, such that S−1AS = Λ is the spectral decomposition of A, with Λ = Λ+ + Λ−.
Especially, notice that

A = A+ +A− . (4)

Consider the one dimensional acoustics equation(
p
v

)
t

+

(
u0 K0

1/ρ0 u0

)(
p
v

)
x

= 0 . (5)

This system is derived from the nonlinear Euler equation by linearizing around some fixed state, as sound waves
are small perturbation in a background media. Here, K0 is the compressibility modulus, and u0 and ρ0 are the the
velocity and pressure, respectively. The speed of sound in the medium is given by

c0 =
√
K0/ρ0 . (6)

1. For (5), calculate A+ and A−.

2. What is the CFL condition of Godunov’s method for (5)?

3. Implement Godunov’s method for (5) the following two sets of initial data

p(x, 0) = sin (2πx) , v(x, 0) = 0, with periodic BC (7)

p(x, 0) =

{
0 x < 0

1 x > 0
, v(x, 0) = 0, , with open BC. (8)

Use u0 = 1/2, K0 = 1, p0 = 1 and solve on the interval x ∈ [−1, 1] with h = 0.01 to T = 0.4 and an
appropriate time-step satisfying the CFL condition.

4. In the solution driven by (8), are the discontinuities visible in the numerical solution at T = 0.4? Plot and
compare with the exact solution at the final time.

5. Now, run your code with the initial data

p(x, 0) =

{
1 x < 0

sin (2πx) x > 0
, v(x, 0) = 0 . (9)

Does the exact solution preserve the discontinuities present in the initial condition? Are you able to observe
the discontinuities in the numerical solution at T = 0.4?
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Solution 1 1. We start by calculating the spectral decomposition of

A =

(
u0 K0

1/ρ0 u0

)
. (10)

Since this is a 2× 2 matrix, this can be done easily. We have

Λ1 = u0 − c0, S1 = (−ρ0c0 , 1)
T

, (11)

and

Λ2 = u0 + c0, S2 = (ρ0c0 , 1)
T

, (12)

where c0 =
√

K0/ρ0. Thus,

S =

(
−ρ0c0 ρ0c0

1 1

)
S−1 =

1

2ρ0c0

(
−1 ρ0c0
1 ρ0c0

)
. (13)

The matrices Λ+ and Λ− can be expressed as

Λ+ =

(
Λ+
1 0
0 Λ+

2

)
Λ− =

(
Λ−
1 0
0 Λ−

2

)
(14)

where Λ+
s = max (Λs, 0) and Λ−

s = min (Λs, 0) for s = 1, 2. Thus we obtain

A+ = SΛ+S−1 =
1

2

(
(Λ+

1 + Λ+
2 ) ρ0c0(−Λ+

1 + Λ+
2 )

(ρ0c0)
−1(−Λ+

1 + Λ+
2 ) (Λ+

1 + Λ+
2 )

)
(15)

and

A− = SΛ−S−1 =
1

2

(
(Λ−

1 + Λ−
2 ) ρ0c0(−Λ−

1 + Λ−
2 )

(ρ0c0)
−1(−Λ−

1 + Λ−
2 ) (Λ−

1 + Λ−
2 )

)
. (16)

2. The CFL condition is a necessary condition for stability. Here, the CFL condition requires that for each
eigenvalue Λs of A, the following must hold

|Λs|k
h

≤ 1 . (17)

Making use of the eigenvalue structure for the given system, we arrive at the condition

(|u0|+ c0)
k

h
≤ 1 . (18)

3. See the Matlab code attached at the end of this solution manual.

4. See figures generated by the Matlab code. Since the conservation law is a linear system, we know that
discontinuities move only along characteristics and can not spontaneously form. If the initial condition is
smooth and satisfies the boundary conditions, then the solution is also smooth. When using the second set of
initial conditions, which is discontinuous, the discontinuities seem to get smeared out as the scheme advances.
This is however due to numerical diffusion in the scheme, and not because discontinuities disappear.

5. See figures generated by the Matlab code attached at the end of this solution manual. With this third set
of initial conditions, it is not straightforward to locate the shocks as these are smeared out to a point where
they are indistinguishable from other smooth regions of the solution.

Using the generalized upwind method for the linear system, we resolve and propagate information in a proper
up-winded manner yielding less numerical diffusion than other schemes that return monotone solutions over
discontinuities, such as the Lax-Friedrichs method. However, the upwind method is still only a first order
method and in general first order methods are not suitable for long time integration or resolving fine details.
Note that in the case of a linear system we can actually construct the exact solution. See the Matlab code
attached for an example on how to do this.
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% Solution07

% This script was written for EPFL MATH459 , Numerical Methods for

% Conservation Laws.

% The one dimensional linearized acoustic equations are solved with

% periodic/open boundary conditions , and initial data

% as given in the exercise.

clc

clear all

close all

% Initial data set

data = 3;

switch data

case 1

pIC =@(x) sin (2*pi*x);

vIC =@(x) 0*x;

bc = 'Periodic ';
case 2

pIC =@(x) 1*(x>0);

vIC =@(x) 0*x;

bc = 'Open';
case 3

pIC =@(x) 1*(x<0) + sin(2*pi*x).*(x>=0);

vIC =@(x) 0*x;

bc = 'Open';
end

% Define Discretization and time parameters

h = 0.01;

xf = -1:h:1;

xc = ( -1+0.5*h):h:(1 -0.5*h);

N = length(xc);

Tfinal = 0.4;

CFL = 0.5;

% Physical constants [u0,k0,p0]

u0 = 1/2;

K0 = 1;

p0 = 1;

c0 = sqrt(K0/p0);

% Find various matrices

A = [u0,K0;1/p0,u0];

S = [-p0*c0, p0*c0; 1,1];

Sinv = [-1, p0*c0; 1, p0*c0 ]/(2*p0*c0);

Lambda = [u0 -c0 ,0;0,u0+c0];

absA = S*abs(Lambda)*Sinv;

% Averaging initial conditions

% Cell -center values sufficient for first -order schemes

U = [pIC(xc);vIC(xc)];

time = 0; iter = 0;

plot_every = 10;

% Solve
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while time < Tfinal

k = CFL*h/(abs(u0) + c0);

if(time + k > Tfinal)

k = Tfinal - time;

end

% Applying boundary conditions to obtain extended vector

U_ext = apply_bc(U,bc);

Flux = GodunovFlux(A,absA ,U_ext (:,1:end -1),U_ext (:,2:end));

U = U - k/h*(Flux (:,2:end) - Flux (:,1:end -1));

time = time + k;

iter = iter + 1;

if(mod(iter ,plot_every)==0 || time == Tfinal)

% Finding exact solution at the current time

Uexact = find_exact(pIC ,vIC ,S,Sinv ,Lambda ,xc ,time);

% Visualize the solution

figure (1)

subplot (2,1,1)

plot(xc ,U(1,:),'-r','LineWidth ' ,2);
hold all

plot(xc ,Uexact (1,:),'--k','LineWidth ' ,2);
ylim([-2 2]);xlim([-1 1]);

legend('Numerical Pressure ','Exact Pressure ','Location ','Best')
grid on;

title(['Time = ',num2str(time)])
hold off

subplot (2,1,2)

plot(xc ,U(2,:),'-r','LineWidth ' ,2);
hold all

plot(xc ,Uexact (2,:),'--k','LineWidth ' ,2);
ylim([-2 2]);xlim([-1 1]);

legend('Numerical Velocity ','Exact Velocity ','Location ','Best')
grid on;

hold off

end

end

function Flux = GodunovFlux(A,absA ,UL,UR)

Flux = 0.5*A*(UL+UR) - 0.5* absA*(UR -UL);

end

% Function returns an extended vector , based on

% the type of boundary condition requested

function U_ext = apply_bc(U,bc)

switch bc

case 'Periodic '
U_ext = [U(:,end) , U, U(:,1)];

case 'Open'
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U_ext = [U(:,1) , U, U(:,end)];

end

% Function evaluates the exact solution at a given time

function Uexact = find_exact(pIC ,vIC ,S,Sinv ,Lambda ,xc,time)

VSelect = @(V,IDX) V(IDX ,:);

V0 =@(x) Sinv*[pIC(x);vIC(x)];

VT_1 =@(x) VSelect(V0(x) ,1);

VT_2 =@(x) VSelect(V0(x) ,2);

Uexact = S*[VT_1(xc -Lambda (1,1)*time);

VT_2(xc -Lambda (2,2)*time)];
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