
Exercise Set 8: Gudonov’s Method

Exercise 1
Discuss qualitatively the derivation of Godunov’s method ; sketch each step in the solution process. Which part of
the algorithm can make its implementation particularly difficult?

Solution 1
Godunov’s method can be outlined in two steps. Suppose we have an approximation vn of the solution u at tn. (i)
Define ũn(x, t) for all x and tn < t < tn+1 = tn + k as the exact solution to the conservation law, satisfying the
initial condition

ũn (x, tn) = vnj x ∈ (xj−1/2, xj+1/2) ∀j . (1)

(ii) Average the resulting function ũn (x, tn+1) over each cell (xj−1/2, xj+1/2) to obtain the approximation

vn+1
j =

1

h

∫ xj+1/2

xj−1/2

ũn (x, tn+1) dx (2)

at tn+1. Now this procedure can be repeated to advance to the next time-step.
In Step (i), we need to solve an exact Riemann problem at each cell-interface, over a small time interval (tn, tn+1).

Since ũn is a solution to the conservation law, (2) yields

vn+1
j =

1

h

∫ xj+1/2

xj−1/2

ũn (x, tn) dx (3)

− 1

h

(∫ tn+k

tn

f
(
ũn
(
xj−1/2, t

))
d t−

∫ tn+k

tn

f
(
ũn
(
xj−1/2, t

))
d t

)
. (4)

First notice that

vnj =
1

h

∫ xj+1/2

xj−1/2

ũn (x, tn) dx , (5)

since ũn satisfies (1). Now, let us look at the other two integrals in (3). Because ũn (·, tn) is piecewise constant,
with a discontinuity at each xj−1/2, and given that the time step k is sufficiently small, ũn

(
xj−1/2, ·

)
is constant.

Let

ũn
(
xj−1/2, t

)
= u∗ (vnj−1, v

n
j

)
t ∈ (tn, tn+1) . (6)

So, if we take

F (ul, ur) = f (u∗(ul, ur)) =
1

k

∫ tn+k

tn

f (u∗(ul, ur)) d t , (7)

then (2) becomes

vn+1
j = vnj − k

h

[
F
(
vnj+1, v

n
j

)
− F

(
vnj , v

n
j−1

) ]
. (8)

This is how the method is applied in practice, provided we can find u∗. Unfortunately, evaluating the intermediate
can be very expensive, and at times impossible. This motivates the need to construct approximate Riemann solvers.
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Exercise 2
Consider the scalar conservation law

ut + f(u)x = 0 , (9)

and initial condition

u(x, 0) =

{
ul x < 0

ur 0 < x
, (10)

where the flux f is convex (f ′′ > 0). Godunov’s method relies on finding the intermediate state u∗ = u∗(ul, ur) for
which u(0, t) = u∗, for t > 0.

1. Show that this intermediate state is given by the following:

1. f ′(ul), f
′(ur) ≥ 0 =⇒ u∗ = ul

2. f ′(ul), f
′(ur) ≤ 0 =⇒ u∗ = ur

3. f ′(ul) ≥ 0 ≥ f ′(ur) =⇒ u∗ =

{
ul s > 0

ur s < 0
, s =

f(ur)− f(ur)

ur − ul

4. f ′(ul) < 0 < f ′(ur) =⇒ u∗ = um , where um is the solution to f ′ (um) = 0.

2. Use (a) to show that Godunov’s flux is given by

F (ul, ur) =


min

ul≤u≤ur

f(u) ul ≤ ur

max
ur≤u≤ul

f(u) ul > ur

. (11)

3. Show that Godunov’s flux (15) is monotone.

Solution 2
Consider the scalar conservation law

ut + f(u)x = 0 , (12)

and initial condition

u(x, 0) =

{
ul x < 0

ur 0 < x
, (13)

where the flux f is convex (f ′′ > 0). Godunov’s method relies on finding the intermediate state u∗ = u∗(ul, ur) for
which u(0, t) = u∗, for t > 0.

1. We show that u∗ is given by

1. f ′(ul), f
′(ur) ≥ 0 =⇒ u∗ = ul

2. f ′(ul), f
′(ur) ≤ 0 =⇒ u∗ = ur

3. f ′(ul) ≥ 0 ≥ f ′(ur) =⇒ u∗ =

{
ul s > 0

ur s < 0
, s =

f(ur)− f(ur)

ur − ul

4. f ′(ul) < 0 < f ′(ur) =⇒ u∗ = um , where um is the solution to f ′ (um) = 0.

Note that since f is strictly convex, the Jacobian f ′ is a strictly increasing function.

Suppose f ′(ul), f
′(ur) ≥ 0. If ul > ur, the entropy solution is a shock moving at speed given by the RH

condition

s =
f(ul)− f(ur)

ul − ur
(14)
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and f ′(ul) > s > f ′(ur) according to the entropy condition. This implies that the shock speed is positive,
and thus we have u∗ = ul. If ul ≤ ur, the entropy solution is a rarefaction wave. Since f ′(ul) > 0, the left
front of the wave moves to the right, and thus u∗ = ul.

Next suppose f ′(ul), f
′(ur) ≤ 0. By similar arguments we get u∗ = ur.

If f ′(ul) ≥ 0 ≥ f ′(ur), the entropy solution is a shock, and the intermediate state u∗ is determined by the
sign of the shock speed (14).

Finally suppose f ′(ul) < 0 < f ′(ur). Then, the entropy solution is a rarefaction wave. This time x = 0 falls
inside the rarefaction fan. As we have seen in a previous exercise (see exercise set 3), the rarefaction solution
is given by u(x, t) = w (x/t), where w is the solution to f ′ (w (ξ)) = ξ. Since we are interested in the value of
u at x = 0, we have u∗ = w (0).

2. Before we begin, let as remark that since f is strictly convex, the its maximum on a given closed interval
[u1, u2] is achieved its maximum at an end point of the interval. Furthermore, there exists a unique θ where
f ′ vanishes. This point corresponds to the global minima of f . If θ ∈ (u1, u2), then f achieves its minimum at
θ, else at an end point of the interval. To show that Godunove’s flux is given by

F (ul, ur) =


min

ul≤u≤ur

f(u) ul ≤ ur

max
ur≤u≤ul

f(u) ul > ur

. (15)

we look at the different possible cases.

If ul > ur, the entropy solution is a shock. In this case, u∗ is determined by the sign of s. If f(ul) > f(ur),
then u∗ = ul, and if f(ul) < f(ur), then u∗ = ur. Either way, f (u∗) is the maximum of f in [ur, ul].

If ul ≤ ur, the entropy solution is a rarefaction wave. This is possible only when 1,2 or 4 are valid. If 1 is
valid, f is increasing in [ul, ur], and f(ul) is the minimum of f in this interval. Similarly, if 2 is valid, f is
decreasing in [ul, ur], and f(ur) is the minimum of f in this interval. If 4 is valid, f achieves its minimum at
the internal point um, where f ′ (um) = 0.

3. To show that Godunov’s flux, given by (15), is monotone, we show that it is non-decreasing in its first
argument and non-increasing in its second argument. If ul < ur and ϵ > 0 is small enough, then

F (ul + ϵ, ur) = min
ul+ϵ≤u≤ur

f(u) ≥ min
ul≤u≤ur

f(u) = F (ul, ur) , (16)

and if ul ≥ ur, then

F (ul + ϵ, ur) = max
ur≤u≤ul+ϵ

f(u) ≥ max
ur≤u≤ul

f(u) = F (ul, ur) . (17)

Similarly, one can show that F is non-increasing in its second argument.

Exercise 3
The purpose of this exercise is to illustrate the Lax-Wendroff Theorem. This theorem states that if there exists a
sequence {(hl, kl)}∞l with kl = λhl (λ is kept constant), such that the corresponding numerical solutions {vl}∞l=1

obtained by a conservative method converges to some function u, then the limit u is a weak solution of the
conservation law. Notice that to deduce the conclusion, we assume that vl converges as l → ∞. That is, convergence
is not a conclusion of the Lax-Wendroff theorem. Also recall that in general weak solutions are not unique, so the
theorem does not guarantee the limit is the correct entropy solution.

Consider a conservative method

vn+1
j = vnj − k

h

(
F
(
vnj , v

n
j+1

)
− F

(
vnj−1, v

n
j

))
(18)

where the numerical flux F is given by

F (v, w) =

f(v) f(v)−f(w)
v−w ≥ 0

f (w) f(v)−f(w)
v−w < 0

. (19)
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1. Construct the entropy solution to the following initial value problem

ut +

(
1

2
u2

)
x

= 0 u(x, 0) =

{
−1 x < 1

1 x > 1
. (20)

2. Fix k/h = 0.5, and implement the above method to (20), in x ∈ (0, 2), 0 < t ≤ 0.25, with the initial data
discretized using cell averages. On the boundaries, set u(0, t) = −1, and u (2, t) = 1.

3. Run the computations by choosing i) hl =
2
l , ii)hl =

2
2l , iii) hl =

2
2l+1 , for l ∈ N.

4. What can you deduce from your results regarding the each of the three sequences of numerical solutions
obtained. Explain your results and conclude how they fit with the Lax-Wendroff theorem.

Solution 3 1. Since Burgers equation is convex and

u(x, 0) =

{
−1 x < 1

1 x > 1
, (21)

that is ul < ur, a shock is not admissible. Therefore, the entropy solution must be a rarefaction wave. The
exact solution to the problem with initial data (21) is given by

u(x, t) =


−1 x ≤ −t+ 1
x−1
t −t+ 1 < x ≤ t+ 1

1 x > t+ 1

. (22)

(b),(c) See Matlab code attached at the end of this manual. Experiment with different values of l.

2. We notice that in case of kl =
1
2l , for any choice of l ∈ N, we get an approximation to the entropy solution,

and that the sequence of solutions converges as l → ∞. In the case kl =
1

2l+1 , for any choice of l ∈ N we get
the entropy violating solution of a stationary discontinuity. Therefore, the sequence of solutions obtained by
taking kl =

1
2l+1 converges to the same entropy violating solution as l → ∞. Note that in either case, the

converged solution is still a weak solution, which is in accordance with the Lax-Wendroff theorem. However,
by taking kl =

1
l , the numerical solution does not converge to any solution with the current scheme.
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