Exercise Set 8: Gudonov’s Method

Exercise 1
Discuss qualitatively the derivation of Godunov’s method; sketch each step in the solution process. Which part of
the algorithm can make its implementation particularly difficult?

Solution 1

Godunov’s method can be outlined in two steps. Suppose we have an approximation v™ of the solution u at t,. (i)
Define u"(x,t) for all z and ¢, < t < tp41 = ¢, + k as the exact solution to the conservation law, satisfying the
initial condition

~n

u (x,tn) = U;L x € ($j71/2,$j+1/2) VJ . (1)

11 verage € resulting runction v (r,t,4+1) OVer eachn ce Ti_1/2sLj41/2 0 obtaln € approximation
i) A the resulting function @ (2, . h cell (z;_1/5,241/2) to obtain th imati

1 [Fit1/2
gti= g [T ) d @)
Tj—1/2
at t,4+1. Now this procedure can be repeated to advance to the next time-step.
In Step (i), we need to solve an exact Riemann problem at each cell-interface, over a small time interval (¢,,, t,41).

Since @™ is a solution to the conservation law, (2) yields

1 [%i+1/2
ot = E/ @ (2, t,) d (3)

Tj_1/2

tntk A
—% (/t /(@ (xjfl/z’t))dt_/t f(@" ($j1/27t))dt> : (4)

n

First notice that
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since u™ satisfies (1). Now, let us look at the other two integrals in (3). Because u" (-, t,) is piecewise constant,
with a discontinuity at each x;_;/5, and given that the time step k is sufficiently small, u" (xj,l /25 ) is constant.
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then (2) becomes
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This is how the method is applied in practice, provided we can find u*. Unfortunately, evaluating the intermediate
can be very expensive, and at times impossible. This motivates the need to construct approzximate Riemann solvers.



Exercise 2
Consider the scalar conservation law

and initial condition

u x<0
u(x,o>—{u el (10)

where the flux f is convex (f” > 0). Godunov’s method relies on finding the intermediate state u* = w*(u, u,) for
which u(0,t) = u*, for ¢t > 0.

1. Show that this intermediate state is given by the following;:
L flw), flur) >0 = u*=u

2. fl(w), f'ur) <0 = " =u,

. {ul s>0  flur) ~ f(w)

3. f >0> fl(u,) = u*= ,
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4. fllw) <0< fl(uy) = u* =uy, where u,, is the solution to f’ (u,,) = 0.
2. Use (a) to show that Godunov’s flux is given by
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3. Show that Godunov’s flux (15) is monotone.
Solution 2
Consider the scalar conservation law

and initial condition

u <0
U(x,0)={u D<g’ (13)

where the flux f is convex (f” > 0). Godunov’s method relies on finding the intermediate state u* = u*(us, u,) for
which «(0,t) = u*, for ¢ > 0.

1. We show that u* is given by

L. f/(ul)af/(ur) ZO = u* =y
2. fl(w), f'(ur) <0 = u* =u,
>0 f(u ) — f(ur)
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4. f’(ul) <0< f’(ur) = u* = Uy s where Uy, 1S the solution to f/ ('U'm) -0

Note that since f is strictly convex, the Jacobian f’ is a strictly increasing function.

Suppose f'(w), f'(u,) > 0. If u; > u,, the entropy solution is a shock moving at speed given by the RH
condition

Up — Uy



and f'(u;) > s > f'(u,) according to the entropy condition. This implies that the shock speed is positive,
and thus we have u* = u;. If u; < w,., the entropy solution is a rarefaction wave. Since f'(u;) > 0, the left
front of the wave moves to the right, and thus u* = w;.

Next suppose f'(u;), f'(u,) < 0. By similar arguments we get u* = u,..

If f'(w;) > 0 > f'(u,), the entropy solution is a shock, and the intermediate state u* is determined by the
sign of the shock speed (14).

Finally suppose f’(u;) < 0 < f’(u,). Then, the entropy solution is a rarefaction wave. This time z = 0 falls
inside the rarefaction fan. As we have seen in a previous exercise (see exercise set 3), the rarefaction solution
is given by w(z,t) = w (z/t), where w is the solution to f’ (w (§)) = £. Since we are interested in the value of
u at = 0, we have u* = w (0).

2. Before we begin, let as remark that since f is strictly convex, the its maximum on a given closed interval
[u1,uz] is achieved its maximum at an end point of the interval. Furthermore, there exists a unique 6 where
f! vanishes. This point corresponds to the global minima of f. If 6 € (u1,uz), then f achieves its minimum at
0, else at an end point of the interval. To show that Godunove’s flux is given by

min () w<u,
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F(u,uy) = . (15)
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we look at the different possible cases.

If u; > w,., the entropy solution is a shock. In this case, u* is determined by the sign of s. If f(u;) > f(u,),
then u* = u;, and if f(u;) < f(u,), then u* = u,.. Either way, f (v*) is the maximum of f in [u;, u].

If w; < u,, the entropy solution is a rarefaction wave. This is possible only when 1,2 or 4 are valid. If 1 is
valid, f is increasing in [u;, u,], and f(1;) is the minimum of f in this interval. Similarly, if 2 is valid, f is
decreasing in [u;, u,], and f(u,) is the minimum of f in this interval. If 4 is valid, f achieves its minimum at
the internal point w,,, where f’ (u.,) = 0.

3. To show that Godunov’s flux, given by (15), is monotone, we show that it is non-decreasing in its first
argument and non-increasing in its second argument. If u; < u, and € > 0 is small enough, then

Fluteu)= uz+161%17?§ur flu) 2 uzgnulgur flu) = Flu,wr) (16)
and if u; > u,., then
F (u; + €, uy) o Jnax fu) > o oax f(u) = F(u,uy) (17)

Similarly, one can show that F' is non-increasing in its second argument.

Exercise 3

The purpose of this exercise is to illustrate the Laz- Wendroff Theorem. This theorem states that if there exists a
sequence {(h;, k;)}7° with k; = Ay (X is kept constant), such that the corresponding numerical solutions {v;},=,
obtained by a conservative method converges to some function u, then the limit u is a weak solution of the
conservation law. Notice that to deduce the conclusion, we assume that v; converges as | — oo. That is, convergence
is not a conclusion of the Lax-Wendroff theorem. Also recall that in general weak solutions are not unique, so the
theorem does not guarantee the limit is the correct entropy solution.

Consider a conservative method

k
o = = (F (o) — F (-0,07) (18)

where the numerical flux F is given by
f(v) J()—f(w) >0

F(v,w) = v . (19)
f(w) f(Ul)]:{U(w) <0



. Construct the entropy solution to the following initial value problem

1, 1 z<1
u+ | zu =0 wu(x,0)= . 20

' (2 )m (=.0) {1 x>1 (20)
Fix k/h = 0.5, and implement the above method to (20), in z € (0,2), 0 < ¢ < 0.25, with the initial data
discretized using cell averages. On the boundaries, set u(0,t) = —1, and u (2,¢) = 1.

Run the computations by choosing i) h; = %, ii)h = 2, iii) by = for [ € N.
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What can you deduce from your results regarding the each of the three sequences of numerical solutions
obtained. Explain your results and conclude how they fit with the Lax-Wendroff theorem.

Solution 3 1. Since Burgers equation is convex and

u(z,0) = {_1 vl ; (21)

1 z>1

that is u; < u,, a shock is not admissible. Therefore, the entropy solution must be a rarefaction wave. The
exact solution to the problem with initial data (21) is given by

-1 zz<—-t+1
u(z,t) =924 —t+1<a<t+1 . (22)
1 r>t+1

See Matlab code attached at the end of this manual. Experiment with different values of [.

We notice that in case of k; = %, for any choice of [ € N, we get an approximation to the entropy solution,

and that the sequence of solutions converges as [ — co. In the case k; = Til, for any choice of | € N we get
the entropy violating solution of a stationary discontinuity. Therefore, the sequence of solutions obtained by
taking k; = ﬁ converges to the same entropy violating solution as I — oco. Note that in either case, the
converged solution is still a weak solution, which is in accordance with the Lax-Wendroff theorem. However,
by taking k; = %, the numerical solution does not converge to any solution with the current scheme.



