Exercise Set 7: Incremental form and Harten's lemma

Information

Consider the conservation law

$$u_t + f(u)_x = 0, (1)$$

and the numerical scheme

$$u_i^{n+1} = G(u_{i-k}^n, ..., u_{i+k}^n). (2)$$

We say that the scheme (2) can be put in incremental form if there exists two incremental coefficients $C_{i+\frac{1}{2}}=C(u^n_{i-k+1},...,u^n_{i+k})$ and $D_{i+\frac{1}{2}}=D(u^n_{i-k+1},...,u^n_{i+k})$, which can be used to re-write the scheme as

$$u_i^{n+1} = u_i^n - C_{i-\frac{1}{2}} \Delta^- u_i^n + D_{i+\frac{1}{2}} \Delta^+ u_i^n,$$
(3)

where $\Delta^+ u_i = u_{i+1} - u_i$ and $\Delta^- u_i = u_i - u_{i-1}$. Harten's lemma states that a scheme written in incremental form is TVD if i) $C_{i+\frac{1}{2}} \geq 0$, ii) $D_{i+\frac{1}{2}} \geq 0$ and iii) $C_{i+\frac{1}{2}} + D_{i+\frac{1}{2}} \leq 1$.

Exercise 1

Prove that any 3-point consistent, conservative scheme with numerical flux $F_{i+\frac{1}{2}}$ admits an incremental form with coefficients

$$C_{i+\frac{1}{2}} = \frac{k}{h} \left(\frac{f(u_{i+1}) - F_{i+\frac{1}{2}}}{\Delta^+ u_i} \right), \qquad D_{i+\frac{1}{2}} = \frac{k}{h} \left(\frac{f(u_i) - F_{i+\frac{1}{2}}}{\Delta^+ u_i} \right).$$

Solution 1

Consider the scheme

$$u_i^{n+1} = u_i^n - \frac{k}{h} \left[F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right]. \tag{4}$$

The RHS of (4) can be re-written as

$$\begin{split} RHS &= u_i^n - \frac{k}{h} \left[F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right] \\ &= u_i^n - \frac{k}{h} \left[F_{i+\frac{1}{2}} - f(u_i) + f(u_i) - F_{i-\frac{1}{2}} \right] \\ &= u_i^n - \frac{k}{h} \left[\frac{F_{i+\frac{1}{2}} - f(u_i)}{\Delta^+ u_i^n} \right] \Delta^+ u_i^n - \frac{k}{h} \left[\frac{f(u_i) - F_{i-\frac{1}{2}}}{\Delta^- u_i^n} \right] \Delta^- u_i^n \\ &= u_i^n + D_{i+\frac{1}{2}} \Delta^+ u_i^n - C_{i-\frac{1}{2}} \Delta^- u_i^n \end{split}$$

since $\Delta^- u_i^n = \Delta^+ u_{i-1}^n$. Thus, the scheme (4) can be written in incremental form.

Exercise 2

Consider a conservative scheme with

• Lax-Friedrich flux:

$$F^{LF}(u,v) = \frac{1}{2} \left(f(u) + f(v) - \frac{h}{k}(v-u) \right),$$

• Local Lax-Friedrich/ Rusanov flux:

$$F^{LLF}(u,v) = \frac{1}{2} (f(u) + f(v) - \alpha(v - u)), \quad \alpha = \max_{u} |f'(u)|,$$

• Lax-Wendroff flux:

$$F^{LW}(u,v) = \frac{1}{2} \left(f(u) + f(v) - \frac{k}{h} f'\left(\frac{u+v}{2}\right) \left(f(v) - f(u)\right) \right),$$

• Roe flux:

$$F^{Roe}(u,v) = \frac{1}{2} \left(f(u) + f(v) - \alpha(v-u) \right), \quad \alpha = \left| \frac{f(v) - f(u)}{v-u} \right|.$$

- 1. Find the incremental coefficients for each flux.
- 2. Check whether all three conditions of Harten's lemma are satisfied with each flux.
- 3. Can you say whether the numerical solution obtained with a TVD scheme is guaranteed to converge to an entropy solution?

Solution 2 1. Note that all four fluxes can be written in the form

$$F(u, v) = \frac{1}{2} (f(u) + f(v) - Q(u, v)(v - u))$$

where

$$\begin{split} Q^{LF}(u,v) &= \frac{h}{k} \ , \\ Q^{LLF}(u,v) &= \alpha = \max_{u} |f'(u)| \ , \\ Q^{LW}(u,v) &= \frac{k}{h} f'\left(\frac{u+v}{2}\right) \left(\frac{f(v)-f(u)}{v-u}\right) \ , \\ Q^{Roe}(u,v) &= \left|\frac{f(v)-f(u)}{v-u}\right| \ . \end{split}$$

Thus, the incremental coefficients are given by

$$C_{i+\frac{1}{2}} = \frac{k}{2h} \left[Q(u_i, u_{i+1}) + \left(\frac{f(u_{i+1}) - f(u_i)}{u_{i+1} - u_i} \right) \right] ,$$

$$D_{i+\frac{1}{2}} = \frac{k}{2h} \left[Q(u_i, u_{i+1}) - \left(\frac{f(u_{i+1}) - f(u_i)}{u_{i+1} - u_i} \right) \right] .$$

Note that the three conditions of Harten's lemma translates to

$$\frac{h}{k} \ge Q(u_i, u_{i+1}) \ge \left| \frac{f(u_{i+1}) - f(u_i)}{u_{i+1} - u_i} \right|. \tag{5}$$

Thus, a three-point conservative flux satisfying (5) will lead to a TVD scheme. Note that the condition (5) also implies that $Q(u_i, u_{i+1})$ is strictly positive.

2. For all schemes, we assume that the usual CFL condition holds

$$\frac{k}{h} \max_{u} |f'(u)| \le 1. \tag{6}$$

Also note that using mean value theorem, we can find a $\xi_{i+\frac{1}{2}}$ such that

$$\frac{f(u_{i+1}) - f(u_i)}{u_{i+1} - u_i} = f'(\xi_{i+\frac{1}{2}}). \tag{7}$$

- For the Lax-Friedrichs flux, the left inequality of (5) clearly holds. Using (6) and (7), the right inequality of (5) is also satisfied.
- For the local Lax-Friedrichs flux, using (6) and (7), both inequalities of (5) is also satisfied.

• For the Lax-Wendroff scheme, we can use (7) to get

$$Q^{LW}(u_i, u_{i+1}) = \frac{k}{h} f'\left(\frac{u_i + u_{i+1}}{2}\right) f'(\xi_{i+\frac{1}{2}}) ,$$

which may fail to be positive. Thus, the (5) need not be satisfied.

Remark: At times, the following alternate expression for the Lax-Wendroff flux is also used

$$\widetilde{F}^{LW} = \frac{1}{2} \left(f(u) + f(v) - \frac{k}{h} \left(\frac{f(v) - f(u)}{v - u} \right) (f(v) - f(u)) \right) ,$$

which leads to

$$\widetilde{Q}^{LW}(u,v) = \frac{k}{h} \left(\frac{f(v) - f(u)}{v - u} \right)^2 \ ,$$

which is clearly positive. Using (7), we have

$$\widetilde{Q}^{LW}(u_i, u_{i+1}) = \frac{k}{h} \left(f'(\xi_{i+\frac{1}{2}}) \right)^2.$$

In order to satisfy the right condition of (5), we need

$$\frac{k}{h}|f'(\xi_{i+\frac{1}{2}})| \ge 1$$

which violates the CFL condition (6).

- For the Roe flux, we can once again show that (5) is satisfied by using (7) and (6).
- 3. Note that the Roe flux satisfies the condition of Harten's lemma, and thus leads to a TVD scheme. But we know that the Roe scheme may give entropy violating solutions. This implies that the TVD property alone does not ensure convergence to entropy solutions.

Exercise 3

Let f(u) = cu. Consider a scheme with the hybrid flux,

$$F(u, v) = \theta F^{LW} + (1 - \theta)F^{LF}, \quad 0 < \theta < 1,$$

which is nothing but a convex combination of the Lax-Friedrich and Lax-Wendroff fluxes. Assuming the usual CFL condition, can you find a θ that will lead to a TVD scheme?

Solution 3

Let us consider the hybrid flux

$$F^{\theta}(u,v) = \theta F^{LW} + (1-\theta)F^{LF}, \quad 0 \le \theta \le 1,$$

which can also be written as

$$F^{\theta}(u,v) = \frac{1}{2} \left(f(u) + f(v) - Q^{\theta}(u,v)(v-u) \right) ,$$

where

$$Q^{\theta}(u,v) = \theta Q^{LW}(u,v) + (1-\theta)Q^{LF}(u,v) \ . \label{eq:Q_exp}$$

Assuming the flux to be linear, i.e., f(u) = cu, we get the simplified expression

$$Q^{\theta}(u,v) = \theta \frac{k}{h}c^2 + (1-\theta)\frac{h}{k} = \theta \left[\left(\frac{k}{h}c \right)^2 - 1 \right] \frac{h}{k} + \frac{h}{k} , \qquad (8)$$

while the condition (5) reduces to

$$\frac{h}{k} \ge Q \ge |c| \ . \tag{9}$$

If the left inequality of (9) need to hold, we must have

$$\theta \left[\left(\frac{k}{h} c \right)^2 - 1 \right] \frac{h}{k} + \frac{h}{k} \le \frac{h}{k} \quad \iff \quad \left(\frac{k}{h} c \right)^2 \le 1 \quad \iff \quad \frac{k}{h} |c| \le 1 \ ,$$

which is always true due to the CFL condition (6). The right inequality of (9) requires

$$\theta \left[\left(\frac{k}{h} c \right)^2 - 1 \right] \frac{h}{k} + \frac{h}{k} \ge |c| \quad \iff \quad \theta \left[\left(\frac{k}{h} c \right)^2 - 1 \right] \ge \frac{k}{h} |c| - 1$$

$$\iff \quad \theta \le \frac{1}{\frac{k}{h} |c| + 1} = \theta^* \quad \text{(using CFL condition)}.$$

Thus, by choosing $\theta \in [0, \theta^*]$, we can recover a TVD scheme.