# Exercise Set 6: More on the Finite Difference Methods

## Exercise 1 (Non-conservative scheme)

Consider the non-conservative scheme for Burgers' equation:

$$U_j^{n+1} = U_j^n - \frac{k}{h} U_j^n \left( U_j^n - U_{j-1}^n \right). \tag{1}$$

Show that this scheme maps non-negative monotonically increasing sequences onto non-negative monotonically increasing sequences. Remark: while this scheme is not conservative, is still of interest in a few contexts. The non-negativity condition is due to the upwinding implicit in the scheme.

#### Solution 1

The scheme can be expressed in the following form:  $U_i^{n+1} = G(U_{i-1}^n, U_i^n)$  with

$$G(V,W) = W - \frac{k}{h}W(W - V) = W\left(1 - \frac{k}{h}W\right) + \frac{k}{h}VW$$
(2)

This scheme maps non-negative monotonically increasing sequences onto non-negative monotonically increasing sequences provided that the sequence are non-negative and that  $W \leq \frac{h}{k}$ .

# Exercise 2 (Monotonicity of FTCS)

What is the flux of the FTCS scheme for the transport equation? Relate it to other fluxes that you know. Determine whether the FTCS scheme is monotone.

## Solution 2

The transport equation of speed a > 0 reads  $u_t(x,t) + au_x(x,t) = 0$  in  $(x,t) \in \mathbb{R} \times [0,\infty)$  equipped with initial condition  $u(x,t) = u_0(x), x \in \mathbb{R}$ . The FTCS (Forward in Time, Central in Space) uses the following approximations

$$\partial_t u(x_j, t^n) \approx \frac{U_j^{n+1} - U_j^n}{k}$$
 and  $\partial_x u(x_j, t^n) \approx \frac{U_{j+1}^n - U_{j-1}^n}{2h}$ . (3)

Thus, the scheme FTCS reads

$$U_j^{n+1} = U_j^n - \frac{ak}{2h} \left( U_{j+1}^n - U_{j-1}^n \right) = U_j^n - \frac{k}{h} \left( a \frac{U_j^n + U_{j+1}^n}{2} - a \frac{U_{j-1}^n + U_j^n}{2} \right). \tag{4}$$

The flux in this case is  $F(U,V) = a\frac{U+V}{2}$ . The FTCS scheme can be expressed in the following form:  $U_j^{n+1} = G(U_{j-1}^n, U_j^n, U_{j+1}^n)$  with

$$G(U, V, W) = V - \frac{ak}{2h} (W - U). \tag{5}$$

One can readily conclude that the scheme is not monotone.

## Exercise 3 (Order of Convergence)

Show that the FTFS scheme for the transport equation is of order (1,1) and that the FTCS scheme is of order (1,2).

#### Solution 3

The FTFS (Forward in Time, Forward in Space) uses the following approximations

$$\partial_t u(x_j, t^n) \approx \frac{U_j^{n+1} - U_j^n}{k} + \mathcal{O}(k) \quad \text{and} \quad \partial_x u(x_j, t^n) \approx \frac{U_{j+1}^n - U_j^n}{h} + \mathcal{O}(h).$$
 (6)

The FTCS (Forward in Time, Central in Space) uses the following approximations

$$\partial_t u(x_j, t^n) \approx \frac{U_j^{n+1} - U_j^n}{k} + \mathcal{O}(k) \quad \text{and} \quad \partial_x u(x_j, t^n) \approx \frac{U_{j+1}^n - U_{j-1}^n}{2h} + \mathcal{O}(h^2).$$
 (7)

For a complete argument, we refer to the Slides 9 "Error analysis of finite-difference schemes".

## Exercise 4 (Linear Scheme)

Under what conditions is a linear scheme  $F(U, V) = w_1 U + w_2 V$  a monotone scheme? Describe the discrete Kruzkov entropy entropy-flux pairs.

## Solution 4

To show that the flux  $F(U,V) = w_1U + w_2V$  leads to a monotone scheme, we need to show that

$$\lambda \partial_1 F(U_{i-1}^n, U_i^n) \ge 0 \tag{8}$$

$$-\lambda \partial_2 F(U_i^n, U_{i+1}^n) \ge 0 \tag{9}$$

$$1 - \lambda(\partial_1 F(U_i^n, U_{i+1}^n) - \partial_2 F(U_{i-1}^n, U_i^n)) \ge 0$$
(10)

where  $\lambda = k/h$ . The first condition implies that  $w_1 \geq 0$ , and the second that  $w_2 \leq 0$ , whereas the third that

$$1 - \lambda \left( w_1 - w_2 \right) \ge 0 \tag{11}$$

## Exercise 5 (Roe flux)

Show that the Roe flux can be written as

$$F(U,V) = \frac{f(V) + f(U)}{2} + \frac{1}{2}\operatorname{sgn}(V - U)|f(V) - f(U)|.$$
(12)

Either show that the Roe flux is monotonicity-preserving or give a counter example.

## Solution 5

The Roe flux is defined as

$$F(U,V) = \begin{cases} f(U), & s \ge 0 \\ f(V), & s < 0 \end{cases}, \quad s = \frac{f(U) - f(V)}{U - V}.$$
 (13)

For Burger's equation, one has  $f(U) = \frac{U^2}{2}$  and

$$\frac{\partial F}{\partial U}(U,V) = \begin{cases} U, & U+V \ge 0, \\ 0, & U+V < 0, \end{cases}$$

$$\tag{14}$$

By selecting U < 0 < V monotonicity cannot be guaranteed.