
Exercise Set 4: The Finite Difference Method

Exercise 1 (Finite Differences Method)
Define the following concepts:

(a) Consistency;

(b) Stability; and,

(c) Convergence.

Discuss the importance of these concepts, how they relate to each other, and how in general they can be established.

Solution 1

1. Consistency. A method is consistent if its local truncation error Tk satisfies

τk(x, t) = O (kp) +O (hq) where p, q > 0 . (1)

Essentially, consistency tells us that we are approximating the solution of the correct PDE.

2. Stability. A method vn+1 = Hkv
n is stable if for each T > 0 there exist constants C and k0, such that

∥Hn
k∥ ≤ C 0 ≤ nk ≤ T , 0 < k < k0 . (2)

3. Convergence. A method is convergent if the error Ek satisfies

lim
k→0

max
0≤kn≤T

∥Ek (·, kn) ∥ = 0 . (3)

Exercise 2 (Leapfrog Method)
The forward time, center space finite difference approximation to the advection equation ut + aux = 0 leads to a
method which is unstable. So let us try something different. By approximating the time derivative by a centered
difference, instead of the forward Euler discretization, we get the Leapfrog method,

vn+1
j = vn−1

j − ak

h
(vnj+1 − vnj−1) . (4)

(i) Draw the stencil of (4).

(ii) Show that (4) is second order accurate in both space and time.

(iii) What is an obvious disadvantage of the Leapfrog method compared to the Lax-Friedrichs or Lax-Wendroff
methods?

Solution 2

1. Let u be a smooth solution of ut + aux = 0. The local truncation error for the Leapfrog scheme is given by

kτk(x, t) = u (x, t+ k)− u (x, t− k) +
ak

h
(u (x+ h, t)− u (x− h, t)) . (5)

Next, we expand all the terms on the right hand side of (5) about (x, t). For example, we have u (x, t+ k)
and u (x, t− k) given by

u (x, t+ k) = u+ utk +
1

2
uttk

2 +O
(
k3

)
(6)

1

and

u (x, t− k) = u− utk +
1

2
uttk

2 +O
(
k3

)
, (7)

where, for simplicity of notation, u, ut and utt stands for u(x, t), ut(x, t) and utt(x, t), respectively. It is, thus,
clear that

u (x, t+ k)− u (x, t− k) = 2kut +O
(
k3

)
. (8)

By repeating the calculation also for the translations in space u(x± h, t), we get

kτk(x, t) = 2kut +O
(
k3

)
+

ak

h

(
2hux +O

(
h3

))
, (9)

which implies

τk(x, t) = 2 (ut + aux) +O
(
k2

)
+O

(
h2

)
. (10)

Since u satisfies ut + aux = 0, the local truncation error is simply τk(x, t) = O
(
k2

)
+O

(
h2

)
.

2. Notice that at the n-th time step, to calculate vn+1, the Leapfrog scheme requires the values, not only vn,
but also of vn−1. Compared to the LF and LW schemes which use only vn to calculate vn+1, this is a clear
disadvantage. In computations, keeping the numerical solution at more than one time level multiplies the size
of memory required for the program.

Another issue is obtaining the first values. In our example, the values of v0 are obtained directly from the
initial data, however the Leapfrog scheme requires another time level to work. So we must use other means
to get v1, and only then can we use the Leapfrog method to advance.

Exercise 3 (Stability of the Lax-Friedrichs Method)
As a possible numerical method for the linear transport equation ut + aux = 0, consider the Lax-Friedrichs method

vn+1
j =

1

2
(vnj+1 + vnj−1)−

ak

2h
(vnj+1 − vnj−1) (11)

Show that this method is stable in the l∞ norm, provided that k and h satisfy the CFL condition

|a|k
h

≤ 1. (12)

Solution 3
To show that the Lax-Friedrichs (LF) scheme is stable provided

|a|k
h

≤ 1 , (13)

we show that ∥Hn∥∞ is bounded for all n, where H is the operator defined by

Hvj =
1

2
(vj+1 + vj−1)−

ak

2h
(vj+1 − vj−1) . (14)

(That is, the LF scheme is given by vn+1 = Hvn.) To do so, we suppose v is some grid function, and calculate the
norm of Hv. We have

∥Hvn∥∞ =

∥∥∥∥12(vj+1 + vj−1)−
ak

2h
(vj+1 − vj−1)

∥∥∥∥
∞

, (15)

≤ 1

2

(
|1− ak

h
|+ |1 + ak

h
|
)
∥vn∥∞ , (16)

≤ ∥vn∥∞ , (17)

whenever (13) holds. Thus,

∥Hn∥∞ ≤ ∥H∥n∞ ≤ 1 ∀n ∈ N . (18)

2

Exercise 4 (Unconditionally Stable Method)
We have seen in the previous exercise that the Lax-Friedrichs method is stable provided k and h satisfy a CFL
condition. A method which is stable for any k and h is said to be unconditionally stable. For a > 0, prove that the
following backward-time backward-space method

vn+1
j = vnj − ak

h
(vn+1

j − vn+1
j−1)

is unconditionally stable in the l∞ norm.

Solution 4
Let us consider the scheme

vn+1
j = vnj − λ

(
vn+1
j − vn+1

j−1

)
, λ =

ak

h
. (19)

Before trying to show stability, we first re-write the scheme (assuming periodic boundaries) as

(1 + λ) vn+1
j − λvn+1

j−1 = vnj =⇒ Avn+1 = vn, (20)

where

A =



1 + λ 0 . . . 0 −λ
−λ 1 + λ 0 . . . 0
. . .

. . .
. . . 0 0

0
. . .

. . .
. . . 0

0 . . . 0 −λ 1 + λ

 (21)

Note that we can now write the scheme in the form vn+1 = Hvn, where H = A−1, provided A is non-singular.
Since A is strictly diagonally dominant, its eigenvalues are non-zero by Gershgorin’s theorem. This proves that A
is invertible. Furthermore, there is a nice theorem (see the book by Varah below) about a diagonally dominant
matrix A, which says

∥A−1∥∞ ≤ 1

α
, α = min

k

|Akk| −
∑
j ̸=k

|Akj |

 . (22)

In our case, α = 1. Thus, ∥H∥∞ =
∥∥A−1

∥∥
∞ ≤ 1. Since this condition holds independent of any CFL restrictions

on h and k, the scheme is unconditionally stable.

References

[1] A lower bound for the smallest singular value of a matrix, by J. M. Varah. Linear Algebra and its Applications,
vol. 11, issue 1, pg 3-5, 1975.

Exercise 5 (Matlab Implementation)
This exercise involves some programming. Consider the scalar advection equation ut + aux = 0 with a = 1. Let u
be the solution of ut + aux = 0 in (−1, 1) that satisfies initial condition

u(x, 0) = u0(x), (23)

where

u0(x) =

{
1 x < 0

0 x > 0
, (24)

and boundary conditions
u(−1, t) = 1 u(1, t) = 0 (25)

3

We already know that the exact solution for 0 < t < 1 is given by u0(x− at), but how well do numerical methods
approximate such a problem? In the following consider the schemes

Upwind: vn+1
j = vnj − ak

h
(vnj − vnj−1)

Lax-Friedrichs: vn+1
j =

1

2
(vnj+1 + vnj−1)−

ak

2h
(vnj+1 − vnj−1)

Lax-Wendroff: vn+1
j = vnj − ak

2h
(vnj+1 − vnj−1) +

(ak)2

2h2
(vnj+1 − 2vnj + vnj−1)

Beam-Warming: vn+1
j = vnj − ak

2h
(3vnj − 4vnj−1 + vnj−2) +

(ak)2

2h2
(vnj − 2vnj−1 + vnj−2) .

For each of the schemes above:

1. Implement the scheme in Matlab to solve ut + aux = 0, in (−1, 1), with (24), and (25) in the time interval
t ∈ [0, 0.5]. For your computations use h = 0.0025 and k/h = 0.5.

2. Visualize the numerical solution and the exact solution.

3. Comment qualitatively on the solutions’ behavior.

4. Write a script to generate a log-log plot of the error as a function of the resolution (either h, or the number
of points in the spatial grid), while keeping the ratio k/h = 0.5 fixed (why is this important?).

5. Use the plot to deduce the accuracy of the method.

6. Compare your results with the accuracy you would expect on a smooth solution.

Solution 5 1. Matlab code for implementing the schemes to solve the advection equation can be found on the
last two pages of this solution manual.

2. In Figure 1, u (x, 0.5) is plotted as solved by the Upwind, Lax-Friedrichs, Lax-Wendroff and Beam-Warming
methods.

3. Both the upwind and Lax-Friedrichs schemes capture the discontinuity. The upwind scheme, however, seems
to produce less numerical dissipation. This is because the upwind scheme exploits that fact that information
travels only in one direction. The higher order methods Lax-Wendroff and Beam-Warming both introduce
oscillations around the discontinuities.

(d),(e) See Figure 2.

4. Notice how, on this problem with non-smooth solutions, the rate of convergence of the first order methods is
now O

(
h1/2

)
, while the rate of convergence of the second order methods seem to be O

(
h0.6

)
at best.

4

% Solution04: Problem 5

% This script was written for EPFL MATH459 , Numerical Methods for

% Conservation Laws. The scalar advection equation du/dx + du/dt = 0

% with riemann initial data: u = 1 if x<0, 0 if x>0.

% The problem is solved using the following schemes:

% 1. Upwind

% 2. Lax -Friedrichs

% 3. Lax -Wendroff

% 4. Beam -Warming

% The solution is visualized and the accuracy of the scheme tested.

clc

clear all

close all

% Scheme Options: UW --> Upwind

% LF --> Lax -Friedrichs

% LW --> Lax -Wendroff

% BW --> Beam -Warming

% Task Options : Solve --> To simply run the scheme with h=0.0025 and k/h

= 0.5

% Acc --> Test accuracy of the scheme by generating Log -

Log

% plots

Scheme = 'BW';
Task = 'Acc';

% Advection speed and final time

a = 1;

Tf = 0.5;

% Initial condition

U0 =@(x,t) 1*(x-a*t < 0);

% Set the function H for the scheme

% u^{n+1} = H(u^n)

% as well as the number of ghost cells Ng needed at each end of the mesh (

for

% boundary conditions) and the scheme name for saving solutions.

% Here lam = a*k/h and U is the extended solution vector

if(strcmp(Scheme ,'UW'))
Ng = 1;

Hfunc =@(U,lam) (1 - lam)*U(2:end -1) + lam*U(1:end -2);

name = 'Upwind ';
elseif(strcmp(Scheme ,'LF'))

Ng = 1;

Hfunc =@(U,lam) (1 - lam)/2*U(3:end) + (1 + lam)/2*U(1:end -2);

name = 'Lax -Friedrichs ';
elseif(strcmp(Scheme ,'LW'))

Ng = 1;

Hfunc =@(U,lam) (1 - lam^2)*U(2:end -1) + (lam^2-lam)/2*U(3:end)...

+ (lam^2+lam)/2*U(1:end -2);

name = 'Lax -Wendroff ';
elseif(strcmp(Scheme ,'BW'))

Ng = 2;

Hfunc =@(U,lam) (1 - 3*lam/2 + lam ^2/2)*U(3:end -2) ...

5

+ (2*lam - lam^2)*U(2:end -3)...

+ (-lam + lam^2)/2*U(1:end -4);

name = 'Beam -Warming ';
else

error('Unknown Scheme selected !!');
end

% Performing Tasks

% Run scheme

if strcmp(Task ,'Solve ')
fprintf('Solving problem with %s scheme\n',name)

% Discretization

h = 0.0025;

k = 0.5*h;

x = -1:h:1;

t = 0:k:Tf;

N = numel(x);

Nt = numel(t);

% Set initial condition

U = U0(x,0);

% Solve using the numerical scheme. We use open boundary conditions

lam = a*k/h;

plot_every = 10; % Plot after every 10 time instances

for i = 2:Nt

Uext = [ones(1,Ng)*U(1),U,ones(1,Ng)*U(N)];

U = Hfunc(Uext ,lam);

if(mod(i,plot_every)==0 || i==Nt)

Uexact = U0(x,t(i));

figure (1)

plot(x,U,'-r','LineWidth ' ,2)
hold all

plot(x,Uexact ,'-k','LineWidth ' ,2)
ylim ([-0.5 ,1.5])

grid on;

legend('Numerical ','Exact ','Location ','best')
title([name ,', time = ',num2str(t(i))]);
hold off

set(gca ,'XTick ' , -0.5:0.5:1 ,'FontSize ' ,20)
end

end

% Save plot

FIG = figure (1);

fname = sprintf('%s_Profile.pdf',name);
set(FIG ,'Units ','Inches ');
pos = get(FIG ,'Position ');
set(FIG ,'PaperPositionMode ','Auto','PaperUnits ','Inches ','PaperSize ',[

pos(3), pos(4)])

print(FIG ,fname ,'-dpdf','-r0')

6

% Accuracy test

elseif strcmp(Task ,'Acc')
fprintf('Finding accuracy of %s scheme\n',name)
H = 0.05*2.^(0: -1: -8);

E = zeros(numel(H) ,1);

n = zeros(numel(H) ,1);

% Find Error

for i = 1: numel(H)

% Discretization

h = H(i);

fprintf('... Solving for h = %f\n',h)
k = 0.5*h;

x = -1:h:1;

t = 0:k:Tf;

N = numel(x);

Nt = numel(t);

% Set initial condition

U = U0(x,0);

% Exact solution at final time

Uexact = U0(x,Tf);

% Solve using the numerical scheme. We use open boundary conditions

lam = a*k/h;

for j = 2:Nt

Uext = [ones(1,Ng)*U(1),U,ones(1,Ng)*U(N)];

U = Hfunc(Uext ,lam);

end

% Measure error in 1 norm

E(i) = sum(abs(U-Uexact))*h;

n(i) = N;

end

% Make loglog plot

p = polyfit(log(n),log(E) ,1);

FIG = figure (1);

loglog(n,E,'-ok');grid on;

xlabel('Resolution ','FontSize ' ,20);
ylabel('Error ','FontSize ' ,20);
title ([name ,'. Slope = ',num2str(p(1))],'FontSize ' ,20);
set(gca ,'FontSize ' ,20)
set(FIG ,'Units ','Inches ');
pos = get(FIG ,'Position ');
set(FIG ,'PaperPositionMode ','Auto','PaperUnits ','Inches ','PaperSize ',[

pos(3), pos(4)])

fname = sprintf('%s_Accuracy.pdf',name);
print(FIG ,fname ,'-dpdf','-r0')

end

7

