
Exercise Set 2: More on Characteristics and Weak solutions

Exercise 1 (Method of Characteristics I)
Suppose that the flux f(u, x, t) is differentiable in all variables. Find curves along which the conservation law

∂u(x, t)

∂t
− x

∂f(u(x, t), x, t)

∂x
= 0 (1)

can be written as a collection of ordinary differential equations.

Solution 1
Let us calculate

∂f(u, x, t)

∂x
=

∂f(u, x, t)

∂u

∂u

∂x
+

∂f(u, x, t)

∂x
. (2)

Therefore,
∂u(x, t)

∂t
− x

(
∂f(u, x, t)

∂u

∂u

∂x
+

∂f(u, x, t)

∂x

)
= 0 (3)

Firstly, we set F (t, x, z) = u(x, t)− z, hence the solution of the conservation law

∂u

∂t
− x

∂f(u, x, t)

∂u

∂u

∂x
= x

∂f(u, x, t)

∂x
(4)

can be understood as the surface implicitly defined as F (t, x, z) = 0. Observe that 4 can be written as ∂u
∂t
∂u
∂x
−1

 ·

 1

−x∂f(u,x,t)
∂u

x∂f(u,x,t)
∂x

 = 0. (5)

The vector (∂u∂t ,
∂u
∂x ,−1)⊤ is normal to the surface F (t, x, z) = 0, hence (1,−x∂f(u,x,t)

∂u , x∂f(u,x,t)
∂x )⊤ is a tangent

vector to F (t, x, z) = 0. Starting from the point (0, ξ, u0(ξ) we consider the characteristic curve with speed vector

(1,−x∂f(u,x,t)
∂u , x∂f(u,x,t)

∂x )⊤. Considering a parametrization (t(s), x(s), z(s))⊤ with s ∈ R of the sought curve, we

enforce its tangent vector to match (1,−x∂f(u,x,t)
∂u , x∂f(u,x,t)

∂x )⊤. In doing so, we get the following set of ODEs
describing the characteristic curve

dt(s)

ds
= 1,

dx(s)

ds
= −x

∂f(u, x, t)

∂u
, and

dz(s)

ds
= x

∂f(u, x, t)

∂x
. (6)

Exercise 2 (Method of Characteristics II)

(i) Consider the conservation law

∂u

∂t
− x

∂u

∂x
= 0 (7)

with initial value

u(x, 0) = x. (8)

Sketch the characteristics up to time t = 1. Describe the graph of the function u(·, t) as t increases.
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(ii) Consider the conservation law

∂u

∂t
+ x

∂u

∂x
= 0 (9)

with initial value

u(x, 0) = x. (10)

Draw the characteristics and describe the graph of the function u(·, t) as t increases.

Solution 2
We start by tacking (i). Firstly, we set F (t, x, z) = u(x, t)− z, hence the solution of the conservation law

∂u

∂t
− x

∂u

∂x
= 0 (11)

can be understood as the surface implicitly defined as F (t, x, z) = 0. Observe that 11 can be written as ∂u
∂t
∂u
∂x
−1

 ·

 1
−x
0

 = 0. (12)

The vector (∂u∂t ,
∂u
∂x ,−1)⊤ is normal to the surface F (t, x, z) = 0, hence (1,−x, 0)⊤ is a tangent vector to F (t, x, z) =

0. Starting from a point (0, ξ, u0(ξ) we consider the characteristic curve with speed vector (1,−x, 0)⊤. Considering a
parametrization (t(s), x(s), z(s))⊤ with s ∈ R of the sought curve, we enforce its tangent vector to match (1,−x, 0)⊤.
In doing so, we get the following set of ODEs describing the characteristic curve

dt(s)

ds
= 1,

dx(s)

ds
= −x, and

dz(s)

ds
= 0. (13)

Considering the aforementioned initial condition, we get the following solutions

t(s) = s, x(s) = ξ exp(−s), and z(s) = u0(ξ). (14)

We remark at this point that the parameters s it is actually equal to the temporal variable t, and that the solution
u(x, t) is constant along the characteristics and equal to the initial condition. From the implicit definition of the
solution of the conservation law as F (t, x, z) = 0, we get that

u(x, t) = u0(ξ) = u0(x exp(t)) = x exp(t). (15)

It is straightforward to verify that u(x, t) in (15) is actually a solution of (11) in the classical sense. For any ξ ∈ R,
the characteristics in the x− t plane are given by

t(x) = − log

(
x

ξ

)
, for xξ > 0. (16)

We proceed to tackle (ii). As in the previous case, we consider a parametrization (t(s), x(s), z(s))⊤ with s ∈ R of
the sought curve, we enforce its tangent vector to match (1, x, 0)⊤. We get the following set of ODEs describing
the characteristic curve

dt(s)

ds
= 1,

dx(s)

ds
= x, and

dz(s)

ds
= 0. (17)

The solution to the ODEs are

t(s) = s, x(s) = ξ exp(s), and z(s) = u0(ξ). (18)

Again, the parameter s it is actually equal to the temporal variable t, and the solution u(x, t) is constant along the
characteristics. From the implicit definition of the solution of the conservation law as F (t, x, z) = 0, we get that

u(x, t) = u0(ξ) = u0(x exp(−t)) = x exp(−t). (19)
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It is straightforward to verify that u(x, t) in (19) solves

∂u

∂t
+ x

∂u

∂x
= 0. (20)

For any ξ ∈ R, the characteristics in the x− t plane are given by

t(x) = log

(
x

ξ

)
, for xξ > 0. (21)

Exercise 3 (Weak Solutions of the Linear Transport Equation)
Show that a weak solution to the linear transport equation

∂u

∂t
+ a

∂u

∂x
= 0,

with a ∈ R and initial data

u(x, 0) =

{
1, for x < 0,
0, for x > 0,

(22)

is given by

u(x, t) =

{
1, for x < at,
0, for x > at,

(23)

Solution 3
We need to prove that for all test functions ϕ ∈ C1(R× [0,∞)) with compact support, it holds

∞∫
0

∞∫
−∞

(
∂ϕ

∂t
u+

∂ϕ

∂x
f(u)

)
dxdt = −

∞∫
−∞

ϕ(x, 0)u(x, 0)dx, (24)

where f(u) = au in the case of this exercise. Assume without loss of generality that a > 0. Then we calculate

∞∫
0

∞∫
−∞

∂ϕ

∂t
udxdt =

0∫
−∞

∞∫
0

∂ϕ

∂t
dtdx+

∞∫
0

∞∫
x/a

∂ϕ

∂t
dtdx = −

0∫
−∞

ϕ(x, 0)dx−
∞∫
0

ϕ
(
x,

x

a

)
dx, (25)

and

∞∫
0

∞∫
−∞

∂ϕ

∂x
f(u)dxdt = a

∞∫
0

at∫
−∞

∂ϕ

∂x
dxdt = a

∞∫
0

ϕ (at, t) dt (26)

Observing that

a

∞∫
0

ϕ (at, t) dt =

∞∫
0

ϕ
(
x,

x

a

)
dx, (27)

and that

0∫
−∞

ϕ(x, 0)dx =

∞∫
−∞

ϕ(x, 0)u(x, 0)dx, (28)

we conclude the desired result.

Exercise 4 (Rarefaction Waves)
Consider the initial value problem

∂u

∂t
+

∂f(u)

∂x
= 0, u(x, 0) = u0(x), (29)
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(a) Initial data u0, given by (30). The rarefaction wave and
the shock both move in the positive direction.

(b) Characteristics of the solution of the Burger’s equation up
until time Tc. The rarefaction wave moves faster than the
shock and at some point in time t = Tc > 0 they meet, and
the characteristics cross each other.

Figure 1: Initial condition u0 and characteristics up until Tc.

with f(u) = u2

2 , and

u0(x) =

{
2, 0 < x < 1,
0, otherwise,

(30)

Here a rarefaction wave arises at one discontinuity and a shock at the other. The goal of this exercise is to determine
the exact solution for all t > 0. In this setup, the rarefaction wave catches up with the shock at some time Tc > 0.

(i) Draw the profile of u0(x) and sketch the characteristics in the strip 0 < t < Tc of the x− t plane.

(ii) Determine the exact solution for 0 < t < Tc.

(iii) Let xs(t) be shock’s location at t > Tc. By using the Rankine-Hugoniot jump condition construct an ODE to
determine xs(t) for all t > Tc. In the sketch you drew in (i), extend the characteristic lines to t > Tc.

Solution 4 (a) Figure 1 contains a sketch of the initial data profile u0 with characteristics evolving. To determine
the speed of the shock originating at x = 1, we use the Rankine-Hugoniot jump condition

sshock =
f (ul)− f (ur)

ul − ur
=

1
22

2 − 1
2 (0)

2

2− (0)
= 1. (31)

At the discontinuity at x = 0 we expect a rarefaction wave to arise. From the general solution to the rarefaction
wave, we have that the right front of this wave moves with a speed of srf = f ′(ur) = 2. The rarefaction wave
thus moves to the right twice as fast as the shock wave and at some point in time the waves must meet.
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(a) Initial data u0, given by (30). The rarefaction wave and
the shock both move in the positive direction.

Figure 2: The characteristic curves (gray lines) of u in the x− t plane.

(b) First we seek to determine the exact solution for 0 < t < Tc, where Tc is the time when the rarefaction wave
catches up with the shock. The time Tc is trivial to find: Since the position of the rarefaction front is xrf = 2t
and the position of the shock is xshock = t+ 1, we have Tc + 1 = 2Tc, namely Tc = 1. Thus,

u(x, t) =


0 x < 0
x
t 0 < x < 2t
2 2t < x < t+ 1
0 t+ 1 < x

sshock =
f (ul)− f (ur)

ul − ur
=

1
22

2 − 1
2 (0)

2

2− (0)
= 1

(c) What happens at t > Tc? We again use the Rankine-Hugoniot jump condition, now to construct an ODE for
the position of the shock xs after the rarefaction and shock wave have merged:

dxs(t)

dt
=

f (ul)− f (ur)

ul − ur
=

1
2

(
xs(t)

t

)2

− 1
2 (0)

2

xs(t)
t − (0)

=
1

2

xs(t)

t

This ODE has the general solution xs(t) = C
√
t. At t = 1 we know that xs = 2 so C = 2. But what about

the profile of u(x, t)? For times t > Tc, we expect the solution to the left of the shock-curve to be obtained
from the rarefaction solution, i.e., u = x/t, while the solution on the right to be u = 0. Note that this is
compatible with the entropy condition for a shock. Thus, the solution can be expressed as

u(x, t) =


0 x < 0
x
t 0 < x < 2

√
t

0 x > 2
√
t

Figure 2 shows the characteristic curves in the x − t plane up to t = Tc and beyond. One can see that the
information originating from (x, t) = (0, 0) reaches up to the shock, even after the rarefaction front have
caught up with it. This means that for t > Tc, in 0 < x < xs, the solution is determined exclusively by the
rarefaction wave, and is not affected by the location, or the existence of the shock.
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