Exercise Set 2: More on Characteristics and Weak solutions

Exercise 1 (Method of Characteristics I)
Suppose that the flux f(u,z,t) is differentiable in all variables. Find curves along which the conservation law
Ou(z,t)  Of(u(x,t), z,1)
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can be written as a collection of ordinary differential equations.

Solution 1
Let us calculate
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Therefore,
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Firstly, we set F'(¢,x,z) = u(z,t) — z, hence the solution of the conservation law

ot T ou or  ox (4)

can be understood as the surface implicitly defined as F(¢,z,z) = 0. Observe that 4 can be written as
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The vector (%—?, %, —1)T is normal to the surface F(t,z,z) = 0, hence (1,—z af(gf’t),xaf(gf’t))—r is a tangent
vector to F(t,x,z) = 0. Starting from the point (0, &, uo(§) we consider the characteristic curve with speed vector
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T. Considering a parametrization (¢(s),z(s),z(s))" with s € R of the sought curve, we
Af (u,z,t) zaf(u,z,t) )T
ou ’ ox

enforce its tangent vector to match (1, —x
describing the characteristic curve

. In doing so, we get the following set of ODEs
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Exercise 2 (Method of Characteristics IT)
(i) Consider the conservation law
ou ou
with initial value

u(z,0) = x. (8)

Sketch the characteristics up to time ¢t = 1. Describe the graph of the function (-, t) as ¢ increases.



(ii) Consider the conservation law
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with initial value
u(z,0) = x. (10)
Draw the characteristics and describe the graph of the function u(-,t) as t increases.

Solution 2
We start by tacking (i). Firstly, we set F(t,z,2) = u(z,t) — z, hence the solution of the conservation law
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can be understood as the surface implicitly defined as F'(¢,x,z) = 0. Observe that 11 can be written as
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The vector (%7;, g—g, —1)T is normal to the surface F(t,x,z) = 0, hence (1, —z,0) " is a tangent vector to F(t,z,z) =
0. Starting from a point (0, £, ug(¢) we consider the characteristic curve with speed vector (1, —z,0)". Considering a
parametrization (¢(s), z(s), 2(s)) " with s € R of the sought curve, we enforce its tangent vector to match (1, —z,0)".
In doing so, we get the following set of ODEs describing the characteristic curve

dt(s) ! dz(s)
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Considering the aforementioned initial condition, we get the following solutions

t(s)=s, xz(s)=CEexp(—s), and z(s)=wug(§). (14)

We remark at this point that the parameters s it is actually equal to the temporal variable ¢, and that the solution
u(x,t) is constant along the characteristics and equal to the initial condition. From the implicit definition of the
solution of the conservation law as F(¢,x,z) = 0, we get that

u(a, ) = uo(€) = uolz exp(t)) = o exp(?). (15)

It is straightforward to verify that u(x,t) in (15) is actually a solution of (11) in the classical sense. For any £ € R,
the characteristics in the z — t plane are given by

t(z) = —log (g) . for x> 0. (16)

We proceed to tackle (ii). As in the previous case, we consider a parametrization (t(s),z(s), z(s))" with s € R of
the sought curve, we enforce its tangent vector to match (1,z,0)". We get the following set of ODEs describing
the characteristic curve
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The solution to the ODEs are

t(s) =s, z(s)=~Eexp(s), and z(s)=wug(&). (18)

Again, the parameter s it is actually equal to the temporal variable ¢, and the solution u(x,t) is constant along the
characteristics. From the implicit definition of the solution of the conservation law as F'(¢,x, z) = 0, we get that

u(, ) = uo(€) = ol exp(—t)) = z exp(—t). (19)



It is straightforward to verify that u(x,t) in (19) solves
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For any ¢ € R, the characteristics in the  — ¢ plane are given by

—0. (20)

t(z) = log (Z) . for z€>0. (21)

Exercise 3 (Weak Solutions of the Linear Transport Equation)
Show that a weak solution to the linear transport equation

% + a@ =0
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with a € R and initial data
1, for =<0,
u(z,0) = { 0, for x>0, (22)
is given by
1, for z <at,
u(w,t) = { 0, for x> at, 23)

Solution 3
We need to prove that for all test functions ¢ € C1(R x [0, 00)) with compact support, it holds
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where f(u) = au in the case of this exercise. Assume without loss of generality that a > 0. Then we calculate
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Observing that
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and that
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we conclude the desired result.
Exercise 4 (Rarefaction Waves)
Consider the initial value problem
ou  Of(u)
= = 2
5 + 5 0, wu(z,0)=wuo(z), (29)
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(a) Initial data ug, given by (30). The rarefaction wave and
the shock both move in the positive direction.

—
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(b) Characteristics of the solution of the Burger’s equation up
until time 7.. The rarefaction wave moves faster than the
shock and at some point in time t = T, > 0 they meet, and
the characteristics cross each other.

Figure 1: Initial condition uy and characteristics up until 7.

with f(u) = %, and

2, 0<zx<1,
uo(x) = { 0, otherwise, (30)

Here a rarefaction wave arises at one discontinuity and a shock at the other. The goal of this exercise is to determine
the exact solution for all ¢ > 0. In this setup, the rarefaction wave catches up with the shock at some time T > 0.

(i) Draw the profile of up(x) and sketch the characteristics in the strip 0 < ¢t < T, of the x — ¢ plane.
(ii) Determine the exact solution for 0 < ¢ < T.

(iii) Let x4(t) be shock’s location at t > T,. By using the Rankine-Hugoniot jump condition construct an ODE to
determine x4 (¢) for all ¢ > T,.. In the sketch you drew in (i), extend the characteristic lines to ¢ > T.

Solution 4 (a) Figure 1 contains a sketch of the initial data profile uy with characteristics evolving. To determine
the speed of the shock originating at * = 1, we use the Rankine-Hugoniot jump condition

flw) = f(ur) _ 322 3(0)?
u; — Uy 2—(0)

Sshock = =1. (31)
At the discontinuity at z = 0 we expect a rarefaction wave to arise. From the general solution to the rarefaction
wave, we have that the right front of this wave moves with a speed of s,y = f’(u,) = 2. The rarefaction wave
thus moves to the right twice as fast as the shock wave and at some point in time the waves must meet.
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(a) Initial data ug, given by (30). The rarefaction wave and
the shock both move in the positive direction.

Figure 2: The characteristic curves (gray lines) of u in the & — ¢ plane.

(b) First we seek to determine the exact solution for 0 < ¢t < T, where T is the time when the rarefaction wave

catches up with the shock. The time T is trivial to find: Since the position of the rarefaction front is x,; = 2¢
and the position of the shock is zghoek =t + 1, we have T, + 1 = 2T, namely T, = 1. Thus,

0 =<0
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(¢c) What happens at t > 7.7 We again use the Rankine-Hugoniot jump condition, now to construct an ODE for

the position of the shock z after the rarefaction and shock wave have merged:

doolt) _ SO = fu) _ 3 (5) —30° 1

_ s(t
dt U — Uy ZT() —(0) 2t
This ODE has the general solution x,(t) = Cv/t. At t = 1 we know that 2, = 2 so C = 2. But what about
the profile of u(x,t)? For times ¢ > T, we expect the solution to the left of the shock-curve to be obtained
from the rarefaction solution, i.e., u = z/t, while the solution on the right to be u = 0. Note that this is
compatible with the entropy condition for a shock. Thus, the solution can be expressed as

r <0
0<z<2Vt
x>/t

Figure 2 shows the characteristic curves in the x — ¢ plane up to t = T, and beyond. One can see that the
information originating from (z,t) = (0,0) reaches up to the shock, even after the rarefaction front have
caught up with it. This means that for t > T¢, in 0 < & < x;, the solution is determined exclusively by the
rarefaction wave, and is not affected by the location, or the existence of the shock.

u(z,t) =

Oy O



