Exercise Set 2: More on Characteristics and Weak solutions

Exercise 1 (Method of Characteristics I)

Suppose that the flux f(u, x, t) is differentiable in all variables. Find curves along which the conservation law

$$\frac{\partial u(x,t)}{\partial t} - x \frac{\partial f(u(x,t), x, t)}{\partial x} = 0 \tag{1}$$

can be written as a collection of ordinary differential equations.

Solution 1

Let us calculate

$$\frac{\partial f(u,x,t)}{\partial x} = \frac{\partial f(u,x,t)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f(u,x,t)}{\partial x}.$$
 (2)

Therefore.

$$\frac{\partial u(x,t)}{\partial t} - x \left(\frac{\partial f(u,x,t)}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f(u,x,t)}{\partial x} \right) = 0$$
 (3)

Firstly, we set F(t, x, z) = u(x, t) - z, hence the solution of the conservation law

$$\frac{\partial u}{\partial t} - x \frac{\partial f(u, x, t)}{\partial u} \frac{\partial u}{\partial x} = x \frac{\partial f(u, x, t)}{\partial x}$$

$$\tag{4}$$

can be understood as the surface implicitly defined as F(t,x,z)=0. Observe that 4 can be written as

$$\begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial x} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -x \frac{\partial f(u, x, t)}{\partial u} \\ x \frac{\partial f(u, x, t)}{\partial x} \end{pmatrix} = 0.$$
 (5)

The vector $(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, -1)^{\top}$ is normal to the surface F(t, x, z) = 0, hence $(1, -x\frac{\partial f(u, x, t)}{\partial u}, x\frac{\partial f(u, x, t)}{\partial x})^{\top}$ is a tangent vector to F(t, x, z) = 0. Starting from the point $(0, \xi, u_0(\xi))$ we consider the characteristic curve with speed vector $(1, -x\frac{\partial f(u, x, t)}{\partial u}, x\frac{\partial f(u, x, t)}{\partial x})^{\top}$. Considering a parametrization $(t(s), x(s), z(s))^{\top}$ with $s \in \mathbb{R}$ of the sought curve, we enforce its tangent vector to match $(1, -x\frac{\partial f(u, x, t)}{\partial u}, x\frac{\partial f(u, x, t)}{\partial x})^{\top}$. In doing so, we get the following set of ODEs describing the characteristic curve

$$\frac{dt(s)}{ds} = 1, \quad \frac{dx(s)}{ds} = -x\frac{\partial f(u, x, t)}{\partial u}, \quad \text{and} \quad \frac{dz(s)}{ds} = x\frac{\partial f(u, x, t)}{\partial x}.$$
(6)

Exercise 2 (Method of Characteristics II)

(i) Consider the conservation law

$$\frac{\partial u}{\partial t} - x \frac{\partial u}{\partial x} = 0 \tag{7}$$

with initial value

$$u(x,0) = x. (8)$$

Sketch the characteristics up to time t=1. Describe the graph of the function $u(\cdot,t)$ as t increases.

(ii) Consider the conservation law

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = 0 \tag{9}$$

with initial value

$$u(x,0) = x. (10)$$

Draw the characteristics and describe the graph of the function $u(\cdot,t)$ as t increases.

Solution 2

We start by tacking (i). Firstly, we set F(t, x, z) = u(x, t) - z, hence the solution of the conservation law

$$\frac{\partial u}{\partial t} - x \frac{\partial u}{\partial x} = 0 \tag{11}$$

can be understood as the surface implicitly defined as F(t,x,z)=0. Observe that 11 can be written as

$$\begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial x} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -x \\ 0 \end{pmatrix} = 0. \tag{12}$$

The vector $(\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, -1)^{\top}$ is normal to the surface F(t, x, z) = 0, hence $(1, -x, 0)^{\top}$ is a tangent vector to F(t, x, z) = 0. Starting from a point $(0, \xi, u_0(\xi))$ we consider the characteristic curve with speed vector $(1, -x, 0)^{\top}$. Considering a parametrization $(t(s), x(s), z(s))^{\top}$ with $s \in \mathbb{R}$ of the sought curve, we enforce its tangent vector to match $(1, -x, 0)^{\top}$. In doing so, we get the following set of ODEs describing the characteristic curve

$$\frac{dt(s)}{ds} = 1, \quad \frac{dx(s)}{ds} = -x, \quad \text{and} \quad \frac{dz(s)}{ds} = 0. \tag{13}$$

Considering the aforementioned initial condition, we get the following solutions

$$t(s) = s, \quad x(s) = \xi \exp(-s), \quad \text{and} \quad z(s) = u_0(\xi).$$
 (14)

We remark at this point that the parameters s it is actually equal to the temporal variable t, and that the solution u(x,t) is constant along the characteristics and equal to the initial condition. From the implicit definition of the solution of the conservation law as F(t,x,z) = 0, we get that

$$u(x,t) = u_0(\xi) = u_0(x \exp(t)) = x \exp(t).$$
 (15)

It is straightforward to verify that u(x,t) in (15) is actually a solution of (11) in the classical sense. For any $\xi \in \mathbb{R}$, the characteristics in the x-t plane are given by

$$t(x) = -\log\left(\frac{x}{\xi}\right), \quad \text{for} \quad x\xi > 0.$$
 (16)

We proceed to tackle (ii). As in the previous case, we consider a parametrization $(t(s), x(s), z(s))^{\top}$ with $s \in \mathbb{R}$ of the sought curve, we enforce its tangent vector to match $(1, x, 0)^{\top}$. We get the following set of ODEs describing the characteristic curve

$$\frac{dt(s)}{ds} = 1, \quad \frac{dx(s)}{ds} = x, \quad \text{and} \quad \frac{dz(s)}{ds} = 0. \tag{17}$$

The solution to the ODEs are

$$t(s) = s, \quad x(s) = \xi \exp(s), \quad \text{and} \quad z(s) = u_0(\xi).$$
 (18)

Again, the parameter s it is actually equal to the temporal variable t, and the solution u(x,t) is constant along the characteristics. From the implicit definition of the solution of the conservation law as F(t,x,z) = 0, we get that

$$u(x,t) = u_0(\xi) = u_0(x \exp(-t)) = x \exp(-t).$$
 (19)

It is straightforward to verify that u(x,t) in (19) solves

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = 0. {20}$$

For any $\xi \in \mathbb{R}$, the characteristics in the x-t plane are given by

$$t(x) = \log\left(\frac{x}{\xi}\right), \quad \text{for} \quad x\xi > 0.$$
 (21)

Exercise 3 (Weak Solutions of the Linear Transport Equation) Show that a weak solution to the linear transport equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0,$$

with $a \in \mathbb{R}$ and initial data

$$u(x,0) = \begin{cases} 1, & \text{for } x < 0, \\ 0, & \text{for } x > 0, \end{cases}$$
 (22)

is given by

$$u(x,t) = \begin{cases} 1, & \text{for } x < at, \\ 0, & \text{for } x > at, \end{cases}$$
 (23)

Solution 3

We need to prove that for all test functions $\phi \in C^1(\mathbb{R} \times [0,\infty))$ with compact support, it holds

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\partial \phi}{\partial t} u + \frac{\partial \phi}{\partial x} f(u) \right) dx dt = -\int_{-\infty}^{\infty} \phi(x, 0) u(x, 0) dx, \tag{24}$$

where f(u) = au in the case of this exercise. Assume without loss of generality that a > 0. Then we calculate

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \phi}{\partial t} u \, dx dt = \int_{-\infty}^{0} \int_{0}^{\infty} \frac{\partial \phi}{\partial t} \, dt dx + \int_{0}^{\infty} \int_{x/a}^{\infty} \frac{\partial \phi}{\partial t} \, dt dx = -\int_{-\infty}^{0} \phi(x, 0) dx - \int_{0}^{\infty} \phi\left(x, \frac{x}{a}\right) dx, \tag{25}$$

and

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \phi}{\partial x} f(u) dx dt = a \int_{0}^{\infty} \int_{-\infty}^{at} \frac{\partial \phi}{\partial x} dx dt = a \int_{0}^{\infty} \phi(at, t) dt$$
 (26)

Observing that

$$a\int_{0}^{\infty}\phi\left(at,t\right)dt = \int_{0}^{\infty}\phi\left(x,\frac{x}{a}\right)dx,\tag{27}$$

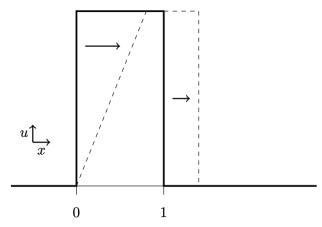
and that

$$\int_{-\infty}^{0} \phi(x,0) dx = \int_{-\infty}^{\infty} \phi(x,0) u(x,0) dx,$$
(28)

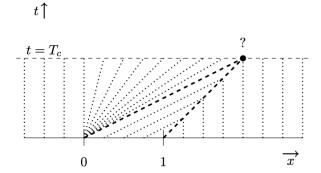
we conclude the desired result.

Exercise 4 (Rarefaction Waves) Consider the initial value problem

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad u(x,0) = u_0(x), \tag{29}$$



(a) Initial data u_0 , given by (30). The rarefaction wave and the shock both move in the positive direction.



(b) Characteristics of the solution of the Burger's equation up until time T_c . The rarefaction wave moves faster than the shock and at some point in time $t=T_c>0$ they meet, and the characteristics cross each other.

Figure 1: Initial condition u_0 and characteristics up until T_c .

with $f(u) = \frac{u^2}{2}$, and

$$u_0(x) = \begin{cases} 2, & 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$
 (30)

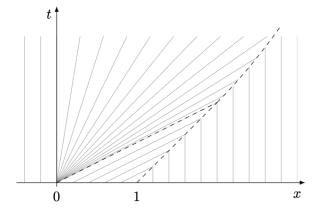
Here a rarefaction wave arises at one discontinuity and a shock at the other. The goal of this exercise is to determine the exact solution for all t > 0. In this setup, the rarefaction wave catches up with the shock at some time $T_c > 0$.

- (i) Draw the profile of $u_0(x)$ and sketch the characteristics in the strip $0 < t < T_c$ of the x t plane.
- (ii) Determine the exact solution for $0 < t < T_c$.
- (iii) Let $x_s(t)$ be shock's location at $t > T_c$. By using the Rankine-Hugoniot jump condition construct an ODE to determine $x_s(t)$ for all $t > T_c$. In the sketch you drew in (i), extend the characteristic lines to $t > T_c$.

Solution 4 (a) Figure 1 contains a sketch of the initial data profile u_0 with characteristics evolving. To determine the speed of the shock originating at x = 1, we use the Rankine-Hugoniot jump condition

$$s_{shock} = \frac{f(u_l) - f(u_r)}{u_l - u_r} = \frac{\frac{1}{2}2^2 - \frac{1}{2}(0)^2}{2 - (0)} = 1.$$
(31)

At the discontinuity at x = 0 we expect a rarefaction wave to arise. From the general solution to the rarefaction wave, we have that the right front of this wave moves with a speed of $s_{rf} = f'(u_r) = 2$. The rarefaction wave thus moves to the right twice as fast as the shock wave and at some point in time the waves must meet.



(a) Initial data u_0 , given by (30). The rarefaction wave and the shock both move in the positive direction.

Figure 2: The characteristic curves (gray lines) of u in the x-t plane.

(b) First we seek to determine the exact solution for $0 < t < T_c$, where T_c is the time when the rarefaction wave catches up with the shock. The time T_c is trivial to find: Since the position of the rarefaction front is $x_{rf} = 2t$ and the position of the shock is $x_{\text{shock}} = t + 1$, we have $T_c + 1 = 2T_c$, namely $T_c = 1$. Thus,

$$u(x,t) = \begin{cases} 0 & x < 0\\ \frac{x}{t} & 0 < x < 2t\\ 2 & 2t < x < t+1\\ 0 & t+1 < x \end{cases}$$

$$s_{shock} = \frac{f(u_l) - f(u_r)}{u_l - u_r} = \frac{\frac{1}{2}2^2 - \frac{1}{2}(0)^2}{2 - (0)} = 1$$

(c) What happens at $t > T_c$? We again use the Rankine-Hugoniot jump condition, now to construct an ODE for the position of the shock x_s after the rarefaction and shock wave have merged:

$$\frac{dx_s(t)}{dt} = \frac{f(u_l) - f(u_r)}{u_l - u_r} = \frac{\frac{1}{2} \left(\frac{x_s(t)}{t}\right)^2 - \frac{1}{2}(0)^2}{\frac{x_s(t)}{t} - (0)} = \frac{1}{2} \frac{x_s(t)}{t}$$

This ODE has the general solution $x_s(t) = C\sqrt{t}$. At t = 1 we know that $x_s = 2$ so C = 2. But what about the profile of u(x,t)? For times $t > T_c$, we expect the solution to the left of the shock-curve to be obtained from the rarefaction solution, i.e., u = x/t, while the solution on the right to be u = 0. Note that this is compatible with the entropy condition for a shock. Thus, the solution can be expressed as

$$u(x,t) = \begin{cases} 0 & x < 0 \\ \frac{x}{t} & 0 < x < 2\sqrt{t} \\ 0 & x > 2\sqrt{t} \end{cases}$$

Figure 2 shows the characteristic curves in the x-t plane up to $t=T_c$ and beyond. One can see that the information originating from (x,t)=(0,0) reaches up to the shock, even after the rarefaction front have caught up with it. This means that for $t>T_c$, in $0 < x < x_s$, the solution is determined exclusively by the rarefaction wave, and is not affected by the location, or the existence of the shock.