Characteristics and Weak solutions

Solution Information
Before we begin to understand the solutions for the exercises in this problem sheet, we first briefly describe the
method of characteristics for solving non-linear first-order partial differential equations. To keep the discussion
concise, we forgo the rigorous arguments, although, the arguments presented can be made rigorous (for details see
the literature references below.).

Let us consider the following PDE

du du
au av_ +
dt+b(x’t’u)dx c(z,t,u), zeRteR (1)

with an initial condition
u(z,0) = uo(w) . (2)

While this is not the most general setup the method can treat, it is general enough for our purpose. The main idea
of the method of characteristics is to find curves in the x — ¢ plane, along which the PDE reduces to an appropriate
system of first-order ODEs. These curves are also known as characteristics.

For a fixed x-intercept £, consider the following ODE

d

dit” = b(z,tu) z(0) =€ (3)
Under sufficient regularity conditions, one can find a unique solution of (3) as Z(&,t) = z(¢;£) (parameterized by
the initial x-intercept). Thus, along the curve {#(&,t),t}, the PDE (1) reduces to the following ODE

d

S =c(@ha) (60 =u (), @

where (€, t) = u(@(§,t),t) = u(z(t; €), t). Again, under sufficient regularity conditions we can find a unique solution
for (4).

Finally, we need to express the solution in terms of the (z,t). In order to do this, we need to solve for ¢ from
the equation x = & (&, t), i.e., we need to find a smooth function é= é(w, t) such that

x =g (é(m,t),t) . (5)

The existence of a function & (x,t) satisfying (5) is ensured if &¢ # 0, due to the inverse function theorem. Thus,
the solution to (1),(2) is given by

w(z,t) = i (é(x,tm) . (6)

Let us now return to the exercise, where we work with conservation laws of the form:

du  df(u)
7 + e 0. (7)
Exercise 1
The partial differential equation
u+ f(u)e =0, u(x,0) =uo(x) (8)



with f(u) = u?/2 is known as (the inviscid) Burgers equation. Draw the characteristics of the solution in the z-t
plane, driven by the initial condition

0 < -1
1+z —-1<z2<0

u(z,0) = uo(zx) := e Oczel 9)
0 1<z

Compute the exact solution in 0 < ¢ < 1 and draw its profile at ¢ = 1.

Solution 1
The second exercise requires us to solve (52) with f(u) = u?/2 and the initial condition

0 r<—1
142 —-1<z<0
= . 10
uo() 1-2 0<z<l1 (10)
0 1<z
Wherever the solution is smooth, we can write
du du
auw o 11
at e = (11)

This PDE has the form (1), with b(z,¢,u) = u and ¢(z,t,u) = 0. The characteristics are given as the solutions of
the ODE

dx du

= 2= = 12

=" =Y (12)
satisfying the initial conditions

Since 4 is clearly constant along the characteristics, we have @ (€, t) = ug (§). Substituting this into the ODE for #,
we get

(&t) =uo(t+¢ . (14)
It follows that

E<—1
+Ot+E —1<E<0
—9t+¢ 0<¢é<
3 1<¢

Figure 1 shows the characteristic curves in the z-t plane and the mapping £ — Z (£, ).

To write the solution u = u(z,t) we must first write £ as a function of x and ¢. As Figure 1 illustrates, this is
possible in 0 < ¢ < 1, since in that time interval the characteristics do not cross. The problem with characteristic
curves crossing is that this means that some values of £ (in our example 0 < £ < 1) correspond to the same value
of z at a given time. This implies that the map & — Z (£, t) is not surjective, and therefore can not be inverted.

For 0 < t < 1 however, we can invert x = & (£,¢). In this example, the way to do this is to fix some 0 < ¢t < 1.
The dashed black line in Figure 1 corresponds to such a choice. Looking at this line we see that * < —1, corresponds
to characteristics originating in £ < —1, —1 < & < t corresponds to —1 < £ < 0, ¢ < x < 1 corresponds 0 < £ < 1
and 1 < x corresponds 1 < ¢. Thus,

£
(1
. (15)

T r < —1
. =t <<t
x,t) = ¢ 1 16
s t) = t<r<l1 (16)
T 1<z



Figure 1: The characteristic curves (gray lines) in the z-t plane and the map & — Z (£,t). The dashed gray lines
are for illustration.
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Figure 2: The solution w at ¢t = 1 (thick line), and the initial function ug (thin line).

With similar arguments we find that the solution u, in 0 < ¢ < 1, is given by

0 r< -1
. Lo _j <<t
u(z,t) = u ( x,t): 1+1 . 17
) =0 ({a0) =4 T LTS 17
0 1<z

Figure 2 shows the solution u at ¢ = 1, and the initial function wuy.
Exercise 2

Consider the following IVP for the Burgers equation

2
u w x<0
u+ | —=— ] =0 wu(x,0) =up(x) = . 18
() =0 ) = o) {u oo (19
This is known as a Riemann problem. For u; < u,, and any u,, € (u;,u,), let
Uy T < Syt
t t
(1) = Um  Sml < T < Unp ’ (19)
T/t upt <z < upt
Up Ut < T

where $,, = (un, + u;)/2. Show that u is a weak solution of (18), and draw its characteristics. Can you give the
expression of any other weak solution for this problem?



Solution 2
For abbreviation, we use the notation

Bow= [ [ (ot ous)dadt, (20)
0 —o0
for any compactly supported C' function. Thus, we have to show
B ($u) = —/ oz, 0)u(z, 0)d z . (21)

Let us consider the Riemann problem for the Burgers equation, with the initial condition

u <0
,0) = = . 22
(2, 0) = uo(a) {UT e (22)
For u; < u,., and any u,, € (u;, u,), we wish to show that
Uy T < Syt
m mt < T < Ut
u(z,t) =4 m Smt S ESY (23)
T/t umt <z < upt
Ur Ut < T
satisfies (21). We first define the functions
< ¢ Uy T < Umlt
U x < Sy
uy(z,t) = { ! ,oug(zt) =S xft upt <z <upt , (24)
Uy St < T
Up Ut < T
and note that
u(x,t) = uy(x,t) + ug(,t) — Uy (25)
and
f (u(xat)) = f (ul(mat)) + f (u2(x,t)) - f (um) . (26)
Thus,
B (¢,u) = B(¢,u1) + B (6,uz) — B (,um) - (27)

For B(¢,u1), consider the change of variables y = « — s,,t and 7 = t. Note that we will also need to change
the derivatives with respect to z and t to derivatives with respect to y and 7. In other words, for ¢(y,7) =
o(x(y,7),t(y, 7)), the chain rule gives us

Oy, )i = by (y, Tye + br (Y, 7)7:
= _8m¢y(y7 T) + EZ;T(:% T)a

Thus, the integral terms change to

o) = [ [ ([0 = 506007 00 04 507, + 8,000 (04 sm, 7)) Fdpd T (28)



where

J = Det (g((;i))) =1 (29)
The integral simplifies to
~ ~ 2
Bon)= [ / (67 (5.7) = sy (. 7)] w0 + By, m) L )y 7 (30)
[ ([ = syl )]+ 8,0, "5y (31)

_ /0 30,7) [(um ), + “ﬂ ar= [~ [t sarn)] | _av @2

2 0o =0

f/jo d(x,0)uy (z,0)d z. (33)

Next, let us consider B (¢,uz). Note that the uz may suffer from a singularity as ¢ — 0%. Thus, we isolate the
possible singularity using an 1 > € > 0 by splitting the integral

B(¢,u2)=/06/_0; (¢tu+¢>zf(uQ))dxdt+/€oo/_o; (6rz + 6 f (u2) )dwdt (34)

=L +1. (35)

Since the integrand in I5 is a continuous, we can perform an integration by parts to get

—LMA:Ttt¢(x,t) (_x 12z>d dt—/ o(x, €)ug(z,€)dx (36)

oo
—/ o(x, e)u(z, e)d z. (37)
— 00
Also, choosing a finite L > 0 such that ¢; and ¢, vanish outside [—L, L], we have
umt
L] < (mum + qsz dxdt‘ » + ba 2t2>dxdt‘ (38)
bruy + m&)dzdt (39)
Upt 2
U |€
< (o [l ) (121 4 ) (40)
+ max (|| ¢elloc max(fum |, [ur]), [|¢oll oo max(fuz, |, [u7])) (wm — ur)e? (41)
Up€>
e ([0l e 2 (U5 + e (12)
S C(Ul,ur7um,¢)6 (43)
where C' is independent of €. Thus, I; — 0 as € — 07 and
B(dus) = — lim Ip — / é(, 0)uz(z, 0)d . (44)
e—0t o
Finally,
(oo}
B (¢, um) = —/ o(z,0)upda . (45)

Using (30), (44) and (45) we get the required result.



Exercise 3
In this example the flux f depends on z as well as on the solution u. Suppose u is the solution of the PDE

us + (a(z)u), =0, a(zx)=2x (46)

which satisfies the initial condition u(x,0) = wug(x), where ug is some given smooth function. Use the method of
characteristics to compute the equation describing the characteristics in the z-t plane. Is the solution u constant
on the characteristic curves?

Solution 3
Suppose u satisfies
du d
=42 = = 4
W @ =0 ale) =2 (47)
and the initial condition u(x,0) = ug(z), where ug is some given smooth function. In a neighborhood of the initial
condition,

du du
e = 4
i T T (48)
therefore, the characteristics are given by the IVP
dz
=7 T = . 4
= B(E0)=¢ (49)
The solution & to the ODE in (49) is obtained as
& (&) =&e' . (50)
The IVP for u on the characteristics is
di .
= (€0 =u(e) (51)

which has the solution @(€,t) = ug(€)e™*. Thus, u is not constant on the characteristics, unless ug is identically
Z€ero.

Information
A function v is said to be a weak solution to the initial value problem (IVP)

ug+ f(u)e =0, wu(z,0)=uo(z) (52)

if for any compactly supported C! function ¢ = ¢(x,t), there holds

[ (o ousw)asa=— [ sw0u(aias -

Exercise 4
Suppose f(u) = au, where a > 0 is a constant and up(z) is an integrable function. Verify that u(x) = ug(x — at)
satisfies (52) in integral form:

/I2 u(zx, ta) de — /HU2 u(x,ty)de = — ’ flu(za,t))dt +/t : flu(zy,t))dt . (54)

1 T1 t1

Solution 4
The integral form of the scalar conservation law (52) is given by

/:zu(x,tg)dx—/:2u(m,t1)dx:—/tltzf(u(arg,t))dt+/:2f(u(xl,t))dt. (55)

1 1

For f(u) = au, the conservation law is reduced to the advection equation. Substituting f(u) = au into (54) yields

To T2 to 123
/ U(x,tg)dfﬂ*/ u(x,tl)dx:fa/ u(xg,t)dt+a/ u(zy,t)dt . (56)

1 1 t1 t1



On the left hand side of (56) is an integral in x, and on the right hand side is an integral in ¢.
Let ug(x) be any integrable function, i.e., ug(z) may include discontinuities. If u(z,t) = uo(x — at), then the
left hand side and ride hand side of (56) take the form

LHSz/ uo(x—atg)dx—/ up (x — aty) dx, (57)

1

to to
RHS:—@/ uo(acg—at)dt—i-a/ U(Z‘l_at)dt (58)

t1 t1

respectively. By substituting the integration variable y = x — ats into the first integral of (57), and the integration
variable y = x — at; into the second, we get

To—ats z2—aty
s= [ Cwwdy- [ uwdy. (59)
T1—ats r1—aty
Similarly, by substituting y = o — at into the first integral of (58), and y = z1 — at in the second we get
To—aty r1—aty
rES == [ Cwdrs [ Cuw)dy. (60)
To—ats z1—ats
Subtracting (60) from (59), we get

xo—aty z2—aty
LHS — RHS = uo(y)dy—/ ug (y)dy =0, (61)

x1—atgy 1—atg

from which we conclude that for any integrable function wg(x), u(z,t) = up(x — at) is a solution to the advection
equation on integral form.
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