
Characteristics and Weak solutions

Solution Information
Before we begin to understand the solutions for the exercises in this problem sheet, we first briefly describe the
method of characteristics for solving non-linear first-order partial differential equations. To keep the discussion
concise, we forgo the rigorous arguments, although, the arguments presented can be made rigorous (for details see
the literature references below.).

Let us consider the following PDE

du

dt
+ b (x, t, u)

du

dx
= c (x, t, u) , x ∈ R, t ∈ R+ (1)

with an initial condition

u(x, 0) = u0(x) . (2)

While this is not the most general setup the method can treat, it is general enough for our purpose. The main idea
of the method of characteristics is to find curves in the x− t plane, along which the PDE reduces to an appropriate
system of first-order ODEs. These curves are also known as characteristics.

For a fixed x-intercept ξ, consider the following ODE

dx

dt
= b (x, t, u) x(0) = ξ. (3)

Under sufficient regularity conditions, one can find a unique solution of (3) as x̂(ξ, t) = x(t; ξ) (parameterized by
the initial x-intercept). Thus, along the curve {x̂(ξ, t), t}, the PDE (1) reduces to the following ODE

d

dt
û (ξ, t) = c (x̂, t, û) û (ξ, 0) = u0 (ξ) , (4)

where û(ξ, t) = u(x̂(ξ, t), t) = u(x(t; ξ), t). Again, under sufficient regularity conditions we can find a unique solution
for (4).

Finally, we need to express the solution in terms of the (x, t). In order to do this, we need to solve for ξ from

the equation x = x̂ (ξ, t), i.e., we need to find a smooth function ξ̂ = ξ̂(x, t) such that

x = x̂
(
ξ̂(x, t), t

)
. (5)

The existence of a function ξ̂(x, t) satisfying (5) is ensured if x̂ξ ̸= 0, due to the inverse function theorem. Thus,
the solution to (1),(2) is given by

u(x, t) = û
(
ξ̂(x, t), t

)
. (6)

Let us now return to the exercise, where we work with conservation laws of the form:

du

dt
+

df(u)

dx
= 0. (7)

Exercise 1
The partial differential equation

ut + f(u)x = 0 , u(x, 0) = u0(x) (8)
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with f(u) = u2/2 is known as (the inviscid) Burgers equation. Draw the characteristics of the solution in the x-t
plane, driven by the initial condition

u(x, 0) = u0(x) :=


0 x < −1

1 + x −1 < x < 0

1− x 0 < x < 1

0 1 < x

. (9)

Compute the exact solution in 0 < t < 1 and draw its profile at t = 1.

Solution 1
The second exercise requires us to solve (52) with f(u) = u2/2 and the initial condition

u0(x) =


0 x < −1

1 + x −1 < x < 0

1− x 0 < x < 1

0 1 < x

. (10)

Wherever the solution is smooth, we can write

du

dt
+ u

du

dx
= 0 . (11)

This PDE has the form (1), with b(x, t, u) = u and c(x, t, u) = 0. The characteristics are given as the solutions of
the ODE

dx

dt
= û,

dû

dt
= 0, (12)

satisfying the initial conditions

x̂ (ξ, 0) = ξ, û (ξ, 0) = u0 (ξ) . (13)

Since û is clearly constant along the characteristics, we have û (ξ, t) = u0 (ξ). Substituting this into the ODE for x̂,
we get

x̂ (ξ, t) = u0 (ξ) t+ ξ . (14)

It follows that

x̂ (ξ, t) =


ξ ξ < −1

(1 + ξ) t+ ξ −1 < ξ < 0

(1− ξ) t+ ξ 0 < ξ < 1

ξ 1 < ξ

. (15)

Figure 1 shows the characteristic curves in the x-t plane and the mapping ξ 7→ x̂ (ξ, t).
To write the solution u = u(x, t) we must first write ξ as a function of x and t. As Figure 1 illustrates, this is

possible in 0 < t < 1, since in that time interval the characteristics do not cross. The problem with characteristic
curves crossing is that this means that some values of ξ (in our example 0 < ξ < 1) correspond to the same value
of x at a given time. This implies that the map ξ 7→ x̂ (ξ, t) is not surjective, and therefore can not be inverted.

For 0 < t < 1 however, we can invert x = x̂ (ξ, t). In this example, the way to do this is to fix some 0 < t < 1.
The dashed black line in Figure 1 corresponds to such a choice. Looking at this line we see that x < −1, corresponds
to characteristics originating in ξ < −1, −1 < x < t corresponds to −1 < ξ < 0, t < x < 1 corresponds 0 < ξ < 1
and 1 < x corresponds 1 < ξ. Thus,

ξ̂(x, t) =


x x < −1
x−t
1+t −1 < x < t
x−t
1−t t < x < 1

x 1 < x

. (16)
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Figure 1: The characteristic curves (gray lines) in the x-t plane and the map ξ 7→ x̂ (ξ, t). The dashed gray lines
are for illustration.

x

u
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Figure 2: The solution u at t = 1 (thick line), and the initial function u0 (thin line).

With similar arguments we find that the solution u, in 0 < t < 1, is given by

u(x, t) = u0

(
ξ̂(x, t)

)
=


0 x < −1
1+x
1+t −1 < x < t
1−x
1−t t < x < 1

0 1 < x

. (17)

Figure 2 shows the solution u at t = 1, and the initial function u0.

Exercise 2
Consider the following IVP for the Burgers equation

ut +

(
u2

2

)
x

= 0 u(x, 0) = u0(x) =

{
ul x < 0

ur 0 < x
. (18)

This is known as a Riemann problem. For ul < ur, and any um ∈ (ul, ur), let

u(x, t) =


ul x < smt

um smt < x < umt

x/t umt < x < urt

ur urt < x

, (19)

where sm = (um + ul)/2. Show that u is a weak solution of (18), and draw its characteristics. Can you give the
expression of any other weak solution for this problem?
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Solution 2
For abbreviation, we use the notation

B (ϕ, u) :=

∫ ∞

0

∫ ∞

−∞

(
ϕtu+ ϕxf(u)

)
dxd t , (20)

for any compactly supported C1 function. Thus, we have to show

B (ϕ, u) = −
∫ ∞

−∞
ϕ(x, 0)u(x, 0)dx . (21)

Let us consider the Riemann problem for the Burgers equation, with the initial condition

u(x, 0) = u0(x) =

{
ul x < 0

ur 0 < x
. (22)

For ul < ur, and any um ∈ (ul, ur), we wish to show that

u(x, t) =


ul x < smt

um smt < x < umt

x/t umt < x < urt

ur urt < x

, (23)

satisfies (21). We first define the functions

u1(x, t) =

{
ul x < smt

um smt < x
, u2(x, t) =


um x < umt

x/t umt < x < urt

ur urt < x

, (24)

and note that

u(x, t) = u1(x, t) + u2(x, t)− um , (25)

and

f (u(x, t)) = f (u1(x, t)) + f (u2(x, t))− f (um) . (26)

Thus,

B (ϕ, u) = B (ϕ, u1) +B (ϕ, u2)−B (ϕ, um) . (27)

For B (ϕ, u1), consider the change of variables y = x − smt and τ = t. Note that we will also need to change

the derivatives with respect to x and t to derivatives with respect to y and τ . In other words, for ϕ̃(y, τ) =
ϕ(x(y, τ), t(y, τ)), the chain rule gives us

ϕ̃(y, τ)t = ϕ̃y(y, τ)yt + ϕ̃τ (y, τ)τt

= −smϕy(y, τ) + ϕ̃τ (y, τ),

ϕ̃(y, τ)x = ϕ̃y(y, τ)yx + ϕ̃τ (y, τ)τx

= ϕ̃y(y, τ).

Thus, the integral terms change to

B (ϕ, u1) =

∫ ∞

0

∫ ∞

−∞

( [
ϕ̃τ (y, τ)− smϕ̃y(y, τ)

]
u1 (y + smτ, τ) + ϕ̃y(y, τ)f(u1 (y + smτ, τ))

)
Jd yd τ (28)
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where

J = Det

(
∂(x, t)

∂(y, τ)

)
= 1. (29)

The integral simplifies to

B (ϕ, u1) =

∫ ∞

0

∫ 0

−∞

( [
ϕ̃τ (y, τ)− smϕ̃y(y, τ)

]
ul + ϕ̃y(y, τ)

u2
l

2

)
d yd τ (30)

+

∫ ∞

0

∫ ∞

0

( [
ϕ̃τ (y, τ)− smϕ̃y(y, τ)

]
um + ϕ̃y(y, τ)

u2
m

2

)
d yd τ (31)

=

∫ ∞

0

ϕ̃(0, τ)

[
(um − ul)sm +

u2
l

2
− u2

m

2

]
d τ −

∫ ∞

−∞

[
ϕ̃(y, τ)u1(y + smτ, τ)

] ∣∣∣
τ=0

d y (32)

= −
∫ ∞

−∞
ϕ(x, 0)u1(x, 0)dx. (33)

Next, let us consider B (ϕ, u2). Note that the u2 may suffer from a singularity as t → 0+. Thus, we isolate the
possible singularity using an 1 > ϵ > 0 by splitting the integral

B (ϕ, u2) =

∫ ϵ

0

∫ ∞

−∞

(
ϕtu+ ϕxf (u2)

)
dxd t+

∫ ∞

ϵ

∫ ∞

−∞

(
ϕtu2 + ϕxf (u2)

)
dxd t (34)

= I1 + I2 . (35)

Since the integrand in I2 is a continuous, we can perform an integration by parts to get

I2 = −
∫ ∞

ϵ

∫ urt

umt

ϕ(x, t)

(
− x

t2
+

1

2

2x

t

)
dxd t−

∫ ∞

−∞
ϕ(x, ϵ)u2(x, ϵ)dx (36)

= −
∫ ∞

−∞
ϕ(x, ϵ)u(x, ϵ)dx. (37)

Also, choosing a finite L > 0 such that ϕt and ϕx vanish outside [−L,L], we have

|I1| ≤
∣∣∣∣∫ ϵ

0

∫ umt

−L

(
ϕtum + ϕx

u2
m

2

)
dxd t

∣∣∣∣+ ∣∣∣∣∫ ϵ

0

∫ urt

umt

(
ϕt

x

t
+ ϕx

x2

2t2

)
dxd t

∣∣∣∣ (38)

+

∣∣∣∣∣
∫ ϵ

0

∫ L

urt

(
ϕtur + ϕx

u2
r

2

)
dxd t

∣∣∣∣∣ (39)

≤ max (∥ϕt∥∞|um|, ∥ϕx∥∞|u2
m|)

( |um|ϵ2
2

+ Lϵ

)
(40)

+ max
(
∥ϕt∥∞ max(|um|, |ur|), ∥ϕx∥∞ max(|u2

m|, |u2
r|)

)
(um − ur)ϵ

2 (41)

+ max (∥ϕt∥∞|ur|, ∥ϕx∥∞|u2
r|)

(
urϵ

2

2
+ Lϵ

)
(42)

≤ C(ul, ur, um, ϕ)ϵ (43)

where C is independent of ϵ. Thus, I1 → 0 as ϵ → 0+ and

B (ϕ, u2) = − lim
ϵ→0+

I2 =

∫ ∞

−∞
ϕ(x, 0)u2(x, 0)dx . (44)

Finally,

B (ϕ, um) = −
∫ ∞

−∞
ϕ(x, 0)umdx . (45)

Using (30), (44) and (45) we get the required result.
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Exercise 3
In this example the flux f depends on x as well as on the solution u. Suppose u is the solution of the PDE

ut + (a(x)u)x = 0, a(x) = x (46)

which satisfies the initial condition u(x, 0) = u0(x), where u0 is some given smooth function. Use the method of
characteristics to compute the equation describing the characteristics in the x-t plane. Is the solution u constant
on the characteristic curves?

Solution 3
Suppose u satisfies

du

dt
+

d

dx
(a(x)u) = 0 a(x) = x (47)

and the initial condition u(x, 0) = u0(x), where u0 is some given smooth function. In a neighborhood of the initial
condition,

du

dt
+ x

du

dx
= −u , (48)

therefore, the characteristics are given by the IVP

dx̂

dt
= x̂, x̂ (ξ, 0) = ξ . (49)

The solution x̂ to the ODE in (49) is obtained as

x̂ (ξ, t) = ξet . (50)

The IVP for u on the characteristics is

dû

dt
= −u û (ξ, 0) = u0 (ξ) . (51)

which has the solution û(ξ, t) = u0(ξ)e
−t. Thus, u is not constant on the characteristics, unless u0 is identically

zero.

Information
A function u is said to be a weak solution to the initial value problem (IVP)

ut + f(u)x = 0 , u(x, 0) = u0(x) (52)

if for any compactly supported C1 function ϕ = ϕ(x, t), there holds∫ ∞

0

∫ ∞

−∞

(
ϕtu+ ϕxf(u)

)
dxd t = −

∫ ∞

−∞
ϕ(x, 0)u0(x)dx . (53)

Exercise 4
Suppose f(u) = au, where a > 0 is a constant and u0(x) is an integrable function. Verify that u(x) = u0(x − at)
satisfies (52) in integral form:∫ x2

x1

u(x, t2) dx−
∫ x2

x1

u(x, t1) dx = −
∫ t2

t1

f(u(x2, t)) dt+

∫ t2

t1

f(u(x1, t)) dt . (54)

Solution 4
The integral form of the scalar conservation law (52) is given by∫ x2

x1

u (x, t2) dx−
∫ x2

x1

u (x, t1) dx = −
∫ t2

t1

f (u (x2, t)) d t+

∫ t2

t1

f (u (x1, t)) d t . (55)

For f(u) = au, the conservation law is reduced to the advection equation. Substituting f(u) = au into (54) yields∫ x2

x1

u (x, t2) dx−
∫ x2

x1

u (x, t1) dx = −a

∫ t2

t1

u (x2, t) d t+ a

∫ t2

t1

u (x1, t) d t . (56)
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On the left hand side of (56) is an integral in x, and on the right hand side is an integral in t.
Let u0(x) be any integrable function, i.e., u0(x) may include discontinuities. If u(x, t) = u0(x − at), then the

left hand side and ride hand side of (56) take the form

LHS =

∫ x2

x1

u0 (x− at2) dx−
∫ x2

x1

u0 (x− at1) dx, (57)

RHS = −a

∫ t2

t1

u0 (x2 − at) d t+ a

∫ t2

t1

u (x1 − at) d t (58)

respectively. By substituting the integration variable y = x− at2 into the first integral of (57), and the integration
variable y = x− at1 into the second, we get

LHS =

∫ x2−at2

x1−at2

u0 (y) d y −
∫ x2−at1

x1−at1

u0 (y) d y . (59)

Similarly, by substituting y = x2 − at into the first integral of (58), and y = x1 − at in the second we get

RHS = −
∫ x2−at1

x2−at2

u0 (y) d y +

∫ x1−at1

x1−at2

u0 (y) d y . (60)

Subtracting (60) from (59), we get

LHS −RHS =

∫ x2−at1

x1−at2

u0 (y) d y −
∫ x2−at1

x1−at2

u0 (y) d y = 0 , (61)

from which we conclude that for any integrable function u0(x), u(x, t) = u0(x− at) is a solution to the advection
equation on integral form.
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