Exercise Set 13: Discontinuous Galerkin

Let $=_x \times_t$, where $_x = (-1,1)$ is the spacial domain and $_t = (0,T)$ is the time domain.

Exercise 1 1. Consider the scalar problem

$$u_t + au_x = bu \quad x \in (-1, 1) \tag{1}$$

with proper initial conditions and a and b being real constants. (a) Propose a discontinuous Galerkin method for solving this problem. (b) Prove that the semi-discrete scheme is stable.

2. Consider the scalar PDE

$$u_t + au_x = g(x, t) (2)$$

in , with proper initial conditions and periodic boundary conditions. Here a > 0 is a real constant. Write the weak discontinuous Galerkin (DG) formulation for the problem. Pick an appropriate numerical flux and prove that the semi-discrete scheme is stable. (Hint: To prove stability, consider the problem for the error between the computed and the exact solution - known as the error equation).

Consider the system

$$u_t + v_x = 0 (3)$$

$$v_t + u_x = 0 (4)$$

in , subject to periodic boundary conditions. Write the weak DG formulation for the problem. Show that the formulation with the upwind flux is stable.

Consider the ODE system

$$u' = L(u) . (5)$$

Suppose there exists a positive constant k_{FE} such that the forward Euler method

$$v^{n+1} = v^n + kL(v^n)$$

with $0 < k \le k_{FE}$, applied to (5) satisfies

$$||v^{n+1}|| \le ||v^n|| \tag{6}$$

in some norm $\|\cdot\|$. Show that the numerical approximation U of (5) obtained by the following 3rd-order Runga-Kutta method

$$\begin{split} U^{(1)} &= U^n + kL \left(U^n \right) \\ U^{(2)} &= \frac{3}{4} U^n + \frac{1}{4} U^{(1)} + \frac{1}{4} kL \left(U^{(1)} \right) \\ U^{n+1} &= \frac{1}{3} U^n + \frac{2}{3} U^{(2)} + \frac{2}{3} kL \left(U^{(2)} \right) \end{split}$$

satisfies (6), provided $0 < k \le k_{FE}$.

Solution 1 1.

2. Consider the scalar PDE

$$u_t + au_x = g(x, t) \tag{7}$$

in with proper initial conditions and periodic boundary conditions.

(a) Suppose the approximation u_h is given in the kth element $D^k = (x_l^k, x_r^k)$ by

$$u_h^k(x,t) = \sum_{n=1}^{N_p} \hat{u}_n^k(t) \ \psi_n^k(x) \ , \tag{8}$$

where ψ_n^k is some basis of the space of polynomials of degree no grater than $N = N_p - 1$. We require that for each $k = 1, \ldots, K$,

$$(h, \psi_j^k)_{D^k} = \hat{g}_j^k \qquad j = 1, \dots, N_p ,$$
 (9)

where $h = (t + a_x) u_h$, $\hat{g}_j^k = (g, \psi_j^k)_{D^k}$, and

$$(\eta, \psi)_{D^k} = \int_{D^k} \eta \psi \mathrm{d} x \ . \tag{10}$$

We use the divergence theorem and substitute the boundary terms by the numerical flux f^* , to get

$$(_{t}u_{h}^{k}, \psi_{j}^{k})_{D^{k}} - a \left(u_{h}^{k}, (\psi_{j}^{k})'\right)_{D^{k}} = -\left(f^{*}\psi_{j}^{k}\right)_{x_{l}^{k}}^{x_{r}^{k}} + \hat{g}_{j}^{k} \qquad j = 1, \dots, N_{p} .$$
 (11)

Substituting (8) into the last equation, provides

$$\sum_{n=1}^{N_p} \left(\psi_n^k, \psi_j^k \right)_{D^k} \left(\hat{u}_n^k \right)' - a \sum_{n=1}^{N_p} \left(\psi_n^k, \left(\psi_j^k \right)' \right)_{D^k} \hat{u}_n^k = - \left(f^* \psi_j^k \right)_{x_l^k}^{x_r^k} + \hat{g}_j^k , \tag{12}$$

for $j = 1, ..., N_p$. This can be also written as a system,

$${}^{k}\left(\hat{\boldsymbol{u}}_{h}^{k}\right)' - a\left({}^{k}\right)^{T}\hat{\boldsymbol{u}}_{h}^{k} = -\left(f^{*}\boldsymbol{\psi}^{k}\right)_{x_{l}^{k}}^{x_{l}^{k}} + \hat{\boldsymbol{g}}^{k}, \qquad (13)$$

where

$$_{jn}^{k} = \left(\psi_{n}^{k}, \psi_{j}^{k}\right)_{D^{k}} \qquad _{nj}^{k} = \left(\psi_{n}^{k}, \left(\psi_{j}^{k}\right)'\right)_{D^{k}}. \tag{14}$$

The periodic boundary conditions are enforced by requiring $f^*|_{x_l^1} = f^*|_{x_r^K}$. This is can be obtained by formally defining $u_h^0 = u_h^K$, $u_h^{K+1} = u_h^1$ and then using the same numerical flux at the entire domain (including the boundaries $x = \pm 1$).

(b) We take the dot product of (13) and $\hat{\boldsymbol{u}}_h^k$, and sum over $k=1,\ldots,K$ to get

$$t \|u_h\|^2 = \sum_{k=1}^K \left[a \left(u_r^k \right)^2 - a \left(u_l^k \right)^2 - 2u_r^k f_{k+1/2}^* + 2u_l^k f_{k-1/2}^* \right] + 2 \left(g, u_h \right) , \tag{15}$$

where, for k = 1, ..., K, $u_l^k = u_h^k(x_l^k, \cdot)$, $u_r^k = u_h^k(x_r^k, \cdot)$, $u_r^0 = u_r^K$, $u_l^{K+1} = u_l^1$, and

$$f_{k+1/2}^* = f^* \left(u_r^k, u_l^{k+1} \right) \quad k = 0, \dots, K$$
 (16)

By rearranging the sum we get

$$t \|u_h\|^2 = -\sum_{k=0}^K \left(u_r^k - u_l^{k+1}\right) \left(2f_{k+1/2}^* - a\left(u_r^k + u_l^{k+1}\right)\right) + 2\left(g, u_h\right) . \tag{17}$$

Substituting the upwind flux $f^*(u_l, u_r) = au_l$ provides

$$t \|u_h\|^2 = -\sum_{k=0}^K a \left(u_r^k - u_l^{k+1}\right)^2 + 2(g, u_h) \le 2(g, u_h) . \tag{18}$$

Finally, by the Cauchy-Schwarz inequality we get

$$\frac{1}{2}t \|u_h\|^2 \le (g, u_h) \le \|g\| \|u_h\| , \qquad (19)$$

which leads to the desired bound on the norm of u_h .

3. (a) The system

$$u_t + v_x = 0 (20)$$

$$v_t + u_x = 0 (21)$$

has the form

$$w_t + Aw_x = 0 (22)$$

where A is a symmetric matrix. In the kth element D^k the approximation w_h is given by

$$w_h^k(x,t) = \sum_{n=1}^{N_p} \psi_n^k(x) \hat{w}_n^k(t) . {23}$$

We require

$$\int_{D^k} \psi_j^k \left({}_t w_h^k + A_x w_h^k \right) dx = 0 \qquad k = 1, \dots, K.$$
 (24)

We integrate by parts, and replace Aw_h^k in the boundary terms by a numerical flux f^* to get

$$\sum_{n=1}^{N_p} (\psi_j^k, \psi_n^k)_{D^k} (\hat{w}_n^k)' - \sum_{n=1}^{N_p} ((\psi_j^k)', \psi_n^k)_{D^k} A \hat{w}_n^k = -(\psi_j^k f^*)_{x_l^k}^{x_r^k}.$$
 (25)

That is

$${}^{k}\left(\hat{\boldsymbol{u}}_{n}^{k}\right)' - {}^{k}\left(\hat{\boldsymbol{v}}_{h}^{k}\right)'' - {}^{k}\left(\hat{\boldsymbol{v}}_{h}^{k}\right)^{T}\hat{\boldsymbol{v}}_{h}^{k} = \left(\boldsymbol{\psi}\boldsymbol{g}^{*}\right)_{x_{h}^{k}}^{x_{r}^{k}} \tag{26}$$

$${}^{k}\left(\hat{\boldsymbol{v}}_{n}^{k}\right)' - {}^{k}\left(\hat{\boldsymbol{v}}_{n}^{k}\right)'' - {}^{k}\left(\hat{\boldsymbol{v}}_{n}^{k}\right)^{T}\hat{\boldsymbol{u}}_{n}^{k} = \left(\boldsymbol{\psi}h^{*}\right)_{x_{l}^{k}}^{x_{r}^{k}}, \tag{27}$$

where $f^* = (g^*, h^*)^T$.

(b) By taking the dot product of (25) and \hat{w}_{j}^{k} , and summing over $j = 1, \ldots, N_{p}$, we get

$$\frac{1}{2}t \|w_h^k\|_{D^k}^2 - \int_{D^k} w_h^k x \cdot A w_h^k \, \mathrm{d} x = -\left(w_h^k \cdot f^*\right)_{x_l^k}^{x_r^k} \,. \tag{28}$$

Since A is symmetric, this implies

$$t \|w_h^k\|_{D^k}^2 = \left(w_h^k \cdot \left(Aw_h^k - 2f^*\right)\right)_{x_k^k}^{x_r^k} = w_r^k \cdot \left(Aw_r^k - 2f_{k,k+1}^*\right) - w_l^k \cdot \left(Aw_l^k - 2f_{k-1,k}^*\right) . \tag{29}$$

Here $w_r^k = w_h^k\left(x_r^k,\cdot\right)$, and $w_l^k = w_h^k\left(x_l^k,\cdot\right)$. Summing over $k=1,\ldots,K$ provides

$$t \|w_h\|^2 = \sum_{k=1}^K w_r^k \cdot \left(Aw_r^k - 2f_{k+1/2}^*\right) - \sum_{k=0}^{K-1} w_l^{k+1} \cdot \left(Aw_l^{k+1} - 2f_{k+1/2}^*\right)$$
(30)

$$= -\sum_{k=0}^{K} \left[w_l^{k+1} \cdot A w_l^{k+1} - w_r^k \cdot A w_r^k - 2 \left(w_l^{k+1} - w_r^k \right) \cdot f_{k+1/2}^* \right]. \tag{31}$$

Now we substitute the upwind flux

$$f_{k+1/2}^* = \frac{1}{2} A \left(w_l^{k+1} + w_r^k \right) - \frac{1}{2} |A| \left(w_l^{k+1} - w_r^k \right)$$
 (32)

into (30) to get

$$t \|w_h\|^2 = -\sum_{k=1}^K \left(w_l^{k+1} - w_r^k\right) \cdot |A| \left(w_l^{k+1} - w_r^k\right) \le 0.$$
 (33)

4. Consider the ODE system

$$u' = L(u) . (34)$$

Suppose there exists a positive constant k_{FE} such that the forward Euler method

$$v^{n+1} = v^n + kL(v^n)$$

with $0 < k \le k_{FE}$, applied to (5) satisfies

$$||v^{n+1}|| \le ||v^n|| \tag{35}$$

in some norm $\|\cdot\|$. Suppose U is the numerical approximation of (5) obtained by the following 3rd-order Runga-Kutta method

$$\begin{split} &U^{(1)} = &U^n + kL\left(U^n\right) \\ &U^{(2)} = &\frac{3}{4}U^n + \frac{1}{4}U^{(1)} + \frac{1}{4}kL\left(U^{(1)}\right) \\ &U^{n+1} = &\frac{1}{3}U^n + \frac{2}{3}U^{(2)} + \frac{2}{3}kL\left(U^{(2)}\right) \ , \end{split}$$

and $0 < k \le k_{FE}$. Next we show that

$$||Ui|| \le ||U^n|| \tag{36}$$

holds for i = 1, 2. As $0 < k \le k_{FE}$, it is clear that U1 satisfies (36). This implies

$$||U2|| \le \frac{3}{4}||U^n|| + \frac{1}{4}||U1 + kL(U1)|| \le \frac{3}{4}||U^n|| + \frac{1}{4}||U1||$$
(37)

which by (36) with i = 1, implies (36) also for i = 2. Finally, we have

$$||U^{n+1}|| \le \frac{1}{3}||U^n|| + \frac{2}{3}||U^2 + kL(U^2)|| \le \frac{1}{3}||U^n|| + \frac{2}{3}||U^2||$$
(38)

which by (36) with i = 2, implies the proposition.