Exercise Set 13: Discontinuous Galerkin

Let =, Xy, where , = (—1,1) is the spacial domain and ; = (0,7) is the time domain.
Exercise 1 1. Consider the scalar problem
u +auy =bu € (—1,1) (1)

with proper initial conditions and a and b being real constants. (a) Propose a discontinuous Galerkin method
for solving this problem. (b) Prove that the semi-discrete scheme is stable.

2. Consider the scalar PDE
up + au, = g(x,t) (2)

in , with proper initial conditions and periodic boundary conditions. Here a > 0 is a real constant. Write
the weak discontinuous Galerkin (DG) formulation for the problem. Pick an appropriate numerical flux and
prove that the semi-discrete scheme is stable. (Hint: To prove stability, consider the problem for the error
between the computed and the exact solution - known as the error equation).

Consider the system

u+v, =0 (3)
Ve + Uy, =0 (4)

in , subject to periodic boundary conditions. Write the weak DG formulation for the problem. Show that the
formulation with the upwind flux is stable.

Consider the ODE system
uw = L(u) . (5)
Suppose there exists a positive constant kgg such that the forward Euler method
"t =" 4 kL (v™)
with 0 < k < kg, applied to (5) satisfies
[0 < [lo" (6)

in some norm ||-||. Show that the numerical approximation U of (5) obtained by the following 3rd-order Runga-Kutta
method

UL =um + kL (U™)
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Ut =%U" + %U@) + %kL (U<2>)
satisfies (6), provided 0 < k < kpp.
Solution 1 1.
2. Consider the scalar PDE
us + aug = g(z,t) (7)

in with proper initial conditions and periodic boundary conditions.



(a)

T

NP
=D ag(t) () (8)

Suppose the approximation wuy, is given in the kth element D* = (xf, mk) by

where ¥ is some basis of the space of polynomials of degree no grater than N = N, — 1. We require
that for each k =1,... K,

(h7w§)Dk:g§ j:17"'7Npa (9)
where h = (t +a$) Uhp, gf - (ng )Dka and
(0 0) e = [ o (10)
Dk
We use the divergence theorem and substitute the boundary terms by the numerical flux f*, to get
’ " zF .
(ks 0f) e —a (b, (0F)) == (PO +dF  G=1. N, (11)

Substituting (8) into the last equation, provides

z Uk 08) o (i —az( oh)) ik == (Fub) gk (12

for j =1,...,N,. This can be also written as a system,
(o) o) == (o) 4 w
)
where
= @) e h= (ehw)),, (14)
The periodic boundary conditions are enforced by requiring f* |$zl = f*|$ K This is can be obtained by
formally defining u) = uk, uhK 1= = u}, and then using the same numerical flux at the entire domain

(including the boundaries = = +1).
We take the dot product of (13) and '&Z, and sum over k =1,..., K to get

K

2 2 " X
tlun|? = Z [a (ur)” —a(uf)” =20y fir o + 20l fryjo | +2(g,un) (15)
k=1
where, for k=1,..., K, uf = ufl (xf,), uf = uﬁ (xf.,-), uld = uI.( ulK+1 = ull, and
frvrpe =1 (wiuf™) k=0, K. (16)
By rearranging the sum we get
K
tllunl® = —Z (uk —uf ) (2fk+1/2 a (u +uk+1)) +2(g,up) . (17)
k=0

Substituting the upwind flux f*(u;,u,) = aw; provides

K
tllunl? = Za (uk — uf“ +2(g,un) <2(g,up) - (18)
k=0
Finally, by the Cauchy-Schwarz inequality we get

1
*tlluhll (g, un) < llgll llunll (19)

which leads to the desired bound on the norm of uy,.



(a) The system

U+ v, =0

Ve +u, =0,
has the form

wy + Aw, =0

where A is a symmetric matrix. In the kth element D* the approximation wy, is given by

NP
= vk (x)wk(t)
n=1

We require

/kw;-“(twﬁJrA:cwﬁ)dx:O k=1,...
D

We integrate by parts, and replace Aw,’j in the boundary terms by a numerical flux f* to get

Np P

kgk) (@) — (W%%%ﬁ
n:l =1
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That is

(k) - (%) k= n)

where f* = (¢*,n*)".
(b) By taking the dot product of (25) and w , and summing over j = 1,.

%t Hw;’j”ék —/ w,’jx . Aw,’i doe = — (w,’j
Dk

Since A is symmetric, this implies

“‘?rﬁw

t k|| = (w) - (Awf —2f7))]

Here wk = wf (:c’,f, ~), and wff = wf (mf, ) Summing over k=1, ...,

K
tume::E:u¢~(Aw

:—Z{ k+1 Awk‘*'1 wf-Awf—2(wlk+1—

Now we substitute the upwind flux

. 1
fk+1/2:§ A( k+1+w ) ‘A| (wlkﬂ_
into (30) to get
K
tllwnll* = = (w ™ —w) - 14] (0 —w
k=1

— (05

~ 3>

'f*)x

wf : (Aw’,f - 2fl:,k+1) -

)

K.

xy

N?_qk

., Np, we get

U’llC : (Aw{“ —2f;71,k) .

K provides

K-1
* k k *
r 2fk+1/2) - Z w . (sz - 2fk+1/2)
k=0

wf) : f;+1/2} .

) <0.

(23)

(32)



4. Consider the ODE system

Suppose there exists a positive constant kgg such that the forward Euler method
" =™ 4 kL (v™)
with 0 < k < kpg, applied to (5) satisfies
[0 < o™ (35)

in some norm || - ||. Suppose U is the numerical approximation of (5) obtained by the following 3rd-order
Runga-Kutta method

UM =um + kL (U™)
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and 0 < k < krg. Next we show that
U] < U™ (36)

holds for i = 1,2. As 0 < k < kpg, it is clear that U1 satisfies (36). This implies
3.1 3.1
(W2l < 200 + 3 101+ KL D) < SJom] + 1|01 (37)
which by (36) with ¢ = 1, implies (36) also for i = 2. Finally, we have
ity L2 1, 2
[0 < 10+ 2 |02 + KL W) < 5|07 + 2102 (38)

which by (36) with ¢ = 2, implies the proposition.



