
Exercise Set 13: Discontinuous Galerkin

Let =x ×t, where x = (−1, 1) is the spacial domain and t = (0, T ) is the time domain.

Exercise 1 1. Consider the scalar problem

ut + aux = bu x ∈ (−1, 1) (1)

with proper initial conditions and a and b being real constants. (a) Propose a discontinuous Galerkin method
for solving this problem. (b) Prove that the semi-discrete scheme is stable.

2. Consider the scalar PDE

ut + aux = g(x, t) (2)

in , with proper initial conditions and periodic boundary conditions. Here a > 0 is a real constant. Write
the weak discontinuous Galerkin (DG) formulation for the problem. Pick an appropriate numerical flux and
prove that the semi-discrete scheme is stable. (Hint: To prove stability, consider the problem for the error
between the computed and the exact solution - known as the error equation).

Consider the system

ut + vx = 0 (3)

vt + ux = 0 (4)

in , subject to periodic boundary conditions. Write the weak DG formulation for the problem. Show that the
formulation with the upwind flux is stable.

Consider the ODE system

u′ = L(u) . (5)

Suppose there exists a positive constant kFE such that the forward Euler method

vn+1 = vn + kL (vn)

with 0 < k ≤ kFE , applied to (5) satisfies

∥vn+1∥ ≤ ∥vn∥ (6)

in some norm ∥·∥. Show that the numerical approximation U of (5) obtained by the following 3rd-order Runga-Kutta
method

U (1) =Un + kL (Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
kL

(
U (1)

)
Un+1 =

1

3
Un +

2

3
U (2) +

2

3
kL

(
U (2)

)
satisfies (6), provided 0 < k ≤ kFE .

Solution 1 1.

2. Consider the scalar PDE
ut + aux = g(x, t) (7)

in with proper initial conditions and periodic boundary conditions.
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(a) Suppose the approximation uh is given in the kth element Dk =
(
xkl , x

k
r

)
by

ukh(x, t) =

Np∑
n=1

ûkn(t) ψ
k
n(x) , (8)

where ψk
n is some basis of the space of polynomials of degree no grater than N = Np − 1. We require

that for each k = 1, . . . ,K, (
h , ψ

k
j

)
Dk = ĝkj j = 1, . . . , Np , (9)

where h = (t + ax)uh, ĝ
k
j =

(
g, ψk

j

)
Dk , and

(η, ψ)Dk =

∫
Dk

ηψdx . (10)

We use the divergence theorem and substitute the boundary terms by the numerical flux f∗, to get(
tu

k
h , ψ

k
j

)
Dk − a

(
ukh ,

(
ψk
j

)′)
Dk

= −
(
f∗ψk

j

)xk
r

xk
l

+ ĝkj j = 1, . . . , Np . (11)

Substituting (8) into the last equation, provides

Np∑
n=1

(
ψk
n, ψ

k
j

)
Dk

(
ûkn

)′ − a

Np∑
n=1

(
ψk
n ,

(
ψk
j

)′)
Dk

ûkn = −
(
f∗ψk

j

)xk
r

xk
l

+ ĝkj , (12)

for j = 1, . . . , Np. This can be also written as a system,

ˆk
(
ûk
h

)′
− a

(̂
k
)T

ûk
h = −

(
f∗ψk

)xk
r

xk
l

+ ĝk , (13)

where

ˆkjn =
(
ψk
n, ψ

k
j

)
Dk ˆknj =

(
ψk
n ,

(
ψk
j

)′)
Dk

. (14)

The periodic boundary conditions are enforced by requiring f∗
∣∣
x1
l

= f∗
∣∣
xK
r
. This is can be obtained by

formally defining u0h = uKh , uK+1
h = u1h and then using the same numerical flux at the entire domain

(including the boundaries x = ±1).

(b) We take the dot product of (13) and ûk
h, and sum over k = 1, . . . ,K to get

t ∥uh∥2 =

K∑
k=1

[
a
(
ukr

)2 − a
(
ukl

)2 − 2ukrf
∗
k+1/2 + 2ukl f

∗
k−1/2

]
+ 2 (g, uh) , (15)

where, for k = 1, . . . ,K, ukl = ukh
(
xkl , ·

)
, ukr = ukh

(
xkr , ·

)
, u0r = uKr , uK+1

l = u1l , and

f∗k+1/2 = f∗
(
ukr , u

k+1
l

)
k = 0, . . . ,K . (16)

By rearranging the sum we get

t ∥uh∥2 = −
K∑

k=0

(
ukr − uk+1

l

) (
2f∗k+1/2 − a

(
ukr + uk+1

l

) )
+ 2 (g, uh) . (17)

Substituting the upwind flux f∗(ul, ur) = aul provides

t ∥uh∥2 = −
K∑

k=0

a
(
ukr − uk+1

l

)2
+ 2 (g, uh) ≤ 2 (g, uh) . (18)

Finally, by the Cauchy-Schwarz inequality we get

1

2
t ∥uh∥2 ≤ (g, uh) ≤ ∥g∥ ∥uh∥ , (19)

which leads to the desired bound on the norm of uh.
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3. (a) The system

ut + vx = 0 (20)

vt + ux = 0 , (21)

has the form

wt +Awx = 0 (22)

where A is a symmetric matrix. In the kth element Dk the approximation wh is given by

wk
h(x, t) =

Np∑
n=1

ψk
n(x)ŵ

k
n(t) . (23)

We require ∫
Dk

ψk
j

(
tw

k
h +Axw

k
h

)
dx = 0 k = 1, . . . ,K . (24)

We integrate by parts, and replace Awk
h in the boundary terms by a numerical flux f∗ to get

Np∑
n=1

(
ψk
j , ψ

k
n

)
Dk

(
ŵk

n

)′ −
Np∑
n=1

((
ψk
j

)′
, ψk

n

)
Dk

Aŵk
n = −

(
ψk
j f

∗)xk
r

xk
l

. (25)

That is

ˆk
(
ûk
n

)′
−
(̂
k
)T

v̂kh = (ψg∗)
xk
r

xk
l

(26)

ˆk
(
v̂kn

)′
−

(̂
k
)T

ûk
h = (ψh∗)

xk
r

xk
l

, (27)

where f∗ = (g∗, h∗)
T
.

(b) By taking the dot product of (25) and ŵk
j , and summing over j = 1, . . . , Np, we get

1

2
t
∥∥wk

h

∥∥2
Dk −

∫
Dk

wk
hx ·Awk

h dx = −
(
wk

h · f∗
)xk

r

xk
l

. (28)

Since A is symmetric, this implies

t
∥∥wk

h

∥∥2
Dk =

(
wk

h ·
(
Awk

h − 2f∗
))xk

r

xk
l

= wk
r ·

(
Awk

r − 2f∗k,k+1

)
− wk

l ·
(
Awk

l − 2f∗k−1,k

)
. (29)

Here wk
r = wk

h

(
xkr , ·

)
, and wk

l = wk
h

(
xkl , ·

)
. Summing over k = 1, . . . ,K provides

t ∥wh∥2 =

K∑
k=1

wk
r ·

(
Awk

r − 2f∗k+1/2

)
−

K−1∑
k=0

wk+1
l ·

(
Awk+1

l − 2f∗k+1/2

)
(30)

= −
K∑

k=0

[
wk+1

l ·Awk+1
l − wk

r ·Awk
r − 2

(
wk+1

l − wk
r

)
· f∗k+1/2

]
. (31)

Now we substitute the upwind flux

f∗k+1/2 =
1

2
A
(
wk+1

l + wk
r

)
− 1

2
|A|

(
wk+1

l − wk
r

)
(32)

into (30) to get

t ∥wh∥2 = −
K∑

k=1

(
wk+1

l − wk
r

)
· |A|

(
wk+1

l − wk
r

)
≤ 0 . (33)
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4. Consider the ODE system

u′ = L(u) . (34)

Suppose there exists a positive constant kFE such that the forward Euler method

vn+1 = vn + kL (vn)

with 0 < k ≤ kFE , applied to (5) satisfies

∥vn+1∥ ≤ ∥vn∥ (35)

in some norm ∥ · ∥. Suppose U is the numerical approximation of (5) obtained by the following 3rd-order
Runga-Kutta method

U (1) =Un + kL (Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
kL

(
U (1)

)
Un+1 =

1

3
Un +

2

3
U (2) +

2

3
kL

(
U (2)

)
,

and 0 < k ≤ kFE . Next we show that

∥Ui∥ ≤ ∥Un∥ (36)

holds for i = 1, 2. As 0 < k ≤ kFE , it is clear that U1 satisfies (36). This implies

∥U2∥ ≤ 3

4
∥Un∥+ 1

4
∥U1 + kL (U1)∥ ≤ 3

4
∥Un∥+ 1

4
∥U1∥ (37)

which by (36) with i = 1, implies (36) also for i = 2. Finally, we have

∥Un+1∥ ≤ 1

3
∥Un∥+ 2

3
∥U2 + kL (U2)∥ ≤ 1

3
∥Un∥+ 2

3
∥U2∥ (38)

which by (36) with i = 2, implies the proposition.
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