Exercise Class #8 Numerical Methods for Conservation Laws

Professor: Martin Licht Assistant: Fernando Henríquez

Friday 17th of November, 2023

Exercise 1

- Discuss qualitatively the derivation of Godunov's method.
- Sketch each step in the solution process.
- Which part of the algorithm can make its implementation particularly difficult?

Exercise 1

- Godunov's method can be outlined in two steps.
- Suppose we have an approximation v^n of the solution u at t_n .
 - (i) Define $\widetilde{u}^n(x,t)$ for all x and $t_n < t < t_{n+1} = t_n + k$ as the exact solution to the conservation law, satisfying the initial condition

$$\widetilde{u}^{n}(x,t_{n})=v_{j}^{n}\quad x\in(x_{j-1/2},x_{j+1/2})\quad\forall j$$
 (1)

(ii) Average the resulting function $\widetilde{u}^n\left(x,t_{n+1}\right)$ over each cell $(x_{j-1/2},x_{j+1/2})$ to obtain the approximation

$$v_j^{n+1} = \frac{1}{h} \int_{x_{j-1/2}}^{x_{j+1/2}} \tilde{u}^n(x, t_{n+1}) \, \mathrm{d}x$$
 (2)

at t_{n+1} .

Now this procedure can be repeated to advance to the next time-step.

Exercise 1

• In Step (i), we need to solve an exact Riemann problem at each cell-interface, over a small time interval (t_n,t_{n+1}) . Since \widetilde{u}^n is a solution to the conservation law, (2) yields

$$v_{j}^{n+1} = \frac{1}{h} \int_{x_{j-1/2}}^{x_{j+1/2}} \tilde{u}^{n}(x, t_{n}) dx$$

$$- \frac{1}{h} \left(\int_{t_{n}}^{t_{n}+k} f\left(\tilde{u}^{n}(x_{j-1/2}, t)\right) dt - \int_{t_{n}}^{t_{n}+k} f\left(\tilde{u}^{n}(x_{j-1/2}, t)\right) dt \right).$$

$$(4)$$

First notice that $v_j^n=\frac{1}{h}\int_{x_{j-1/2}}^{x_{j+1/2}}\widetilde{u}^n\left(x,t_n\right)\mathrm{d}\,x$, since \widetilde{u}^n satisfies (1).

- $\widetilde{u}^n\left(x_{j-1/2},\cdot\right)$ is constant over a small time window. Why?
- Unfortunately, evaluating the intermediate can be very expensive, and at times impossible.
- This motivates the need to construct approximate Riemann solvers.

Exercise 2

Consider the scalar conservation law

$$u_t + f(u)_x = 0 , (5)$$

and initial condition

$$u(x,0) = \begin{cases} u_l & x < 0 \\ u_r & 0 < x \end{cases} , \tag{6}$$

where the flux f is convex (f'' > 0).

Exercise 2: Part I

- Godunov's method relies on finding the intermediate state $u^* = u^*(u_l, u_r)$ for which $u(0, t) = u^*$, for t > 0.
- Show that this intermediate state is given by the following:

1.
$$f'(u_l), f'(u_r) \ge 0 \implies u^* = u_l$$

2.
$$f'(u_l), f'(u_r) \leqslant 0 \implies u^* = u_r$$

3.
$$f'(u_l) \geqslant 0 \geqslant f'(u_r) \implies u^* = \begin{cases} u_l & s > 0 \\ u_r & s < 0 \end{cases}$$
, $s = \frac{f(u_r) - f(u_r)}{u_r - u_l}$

4.
$$f'(u_l) < 0 < f'(u_r) \implies u^* = u_m$$
 ,

where u_m is the solution to $f'(u_m) = 0$.

Theorem 4.12. Let $q \in C^2(\mathbb{R})$ be strictly convex and $q'' \ge h > 0$ or strictly concave and $q'' \le -h < 0$.

a) If q'' > h and $u_- > u_+$ or q'' < h and $u_- < u_+$, the unique entropy solution is given by the shock wave

$$u(x,t) = \begin{cases} u_{+} & x > \sigma(u_{-}, u_{+}) t \\ u_{-} & x < \sigma(u_{-}, u_{+}) t \end{cases}$$

$$(4.65)$$

where

$$\sigma(u_{-}, u_{+}) = \frac{q(u_{+}) - q(u_{-})}{u_{+} - u_{-}}.$$

b) If q'' > h and $u_- < u_+$ or q'' < -h and $u_- > u_+$, the unique entropy solution is given by the rarefaction wave

$$u\left(x,t\right) = \begin{cases} u_{-} & x < q'\left(u_{-}\right)t \\ r\left(\frac{x}{t}\right) & q'\left(u_{-}\right)t < x < q'\left(u_{+}\right)t \\ u_{+} & x > q'\left(u_{+}\right)t \end{cases}$$

where $r = (q')^{-1}$ is the inverse function of q'.

Exercise Set #8 - Exercise 2 - Hints

Exercise 2 - Hints

- Suppose $f'(u_l), f'(u_r) \geqslant 0$.
- ullet If $u_l>u_r$, the entropy solution is a shock moving at speed given by the RH condition

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r} \tag{7}$$

and $f'(u_l) > s > f'(u_r)$ according to the entropy condition.

- ullet This implies that the shock speed is positive, and thus we have $u^*=u_l$.
- If $u_l \leqslant u_r$, the entropy solution is a rarefaction wave.
- Since $f'(u_l) > 0$, the left front of the wave moves to the right, and thus $u^* = u_l$.

Exercise 2: Part II

• Use (a) to show that Godunov's flux is given by

$$F(u_l, u_r) = \begin{cases} \min_{u_l \leqslant u \leqslant u_r} f(u) & u_l \leqslant u_r \\ \max_{u_r \leqslant u \leqslant u_l} f(u) & u_l > u_r \end{cases}$$
(8)

• Show that Godunov's flux (8) is monotone.

Exercise 2: Part III

- Show that Godunov's flux (8) is monotone.
- To show that Godunov's flux, given by (8), is monotone, we show that it is non-decreasing in its first argument and non-increasing in its second argument.
- If $u_l < u_r$ and $\epsilon > 0$ is small enough, then

$$F\left(u_l+\epsilon,u_r
ight)=\min_{u_l+\epsilon\leqslant u\leqslant u_r}f(u)\geqslant \min_{u_l\leqslant u\leqslant u_r}f(u)=F(u_l,u_r)\;, \quad ext{ (9)}$$

and if $u_l \geqslant u_r$, then

$$F\left(u_{l}+\epsilon,u_{r}\right)=\max_{u_{r}\leqslant u\leqslant u_{l}+\epsilon}f(u)\geqslant \max_{u_{r}\leqslant u\leqslant u_{l}}f(u)=F(u_{l},u_{r})\;. \tag{10}$$

Similarly, one can show that F is non-increasing in its second argument.

Exercise 3

- The purpose of this exercise is to illustrate the Lax-Wendroff Theorem.
- Convergence is not a conclusion of the Lax-Wendroff theorem.
- Also recall that in general weak solutions are not unique, so the theorem does not guarantee the limit is the correct entropy solution.
- Consider a conservative method

$$v_{j}^{n+1} = v_{j}^{n} - \frac{k}{h} \left(F\left(v_{j}^{n}, v_{j+1}^{n}\right) - F\left(v_{j-1}^{n}, v_{j}^{n}\right) \right) \tag{11}$$

where the numerical flux F is given by

$$F(v,w) = \begin{cases} f(v) & \frac{f(v) - f(w)}{v - w} \geqslant 0\\ f(w) & \frac{f(v) - f(w)}{v - w} < 0 \end{cases}$$
(12)

Exercise 3

• Construct the entropy solution to the following initial value problem

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0 \quad u(x,0) = \begin{cases} -1 & x < 1\\ 1 & x > 1 \end{cases}$$
 (13)

- Fix k/h=0.5, and implement the above method to (13), in $x\in(0,2)$, $0< t\leqslant 0.25$, with the initial data discretized using cell averages.
- ullet On the boundaries, set u(0,t)=-1, and u(2,t)=1.
- Run the computations by choosing i) $h_l=\frac{2}{l}$, ii) $h_l=\frac{2}{2l}$, iii) $h_l=\frac{2}{2l+1}$, for $l\in\mathbb{N}$.
- What can you deduce from your results regarding the each of the three sequences of numerical solutions obtained?
- Explain your results and conclude how they fit with the Lax-Wendroff theorem.