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Exercise Set #8 - Exercise 1

Exercise 1

• Discuss qualitatively the derivation of Godunov’s method.

• Sketch each step in the solution process.

• Which part of the algorithm can make its implementation particularly difficult?
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Exercise Set #8 - Exercise 1

Exercise 1

• Godunov’s method can be outlined in two steps.

• Suppose we have an approximation vn of the solution u at tn .

(i) Define ũn(x , t) for all x and tn < t < tn+1 = tn + k as the exact
solution to the conservation law, satisfying the initial condition

ũn (x , tn) = vn
j x ∈ (xj−1/2, xj+1/2) ∀j . (1)

(ii) Average the resulting function ũn (x , tn+1) over each cell
(xj−1/2, xj+1/2) to obtain the approximation

vn+1
j =

1
h

∫ xj+1/2

xj−1/2

ũn (x , tn+1)d x (2)

at tn+1.

Now this procedure can be repeated to advance to the next time-step.
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Exercise Set #7 - Exercise 1

Exercise 1

• In Step (i), we need to solve an exact Riemann problem at each cell-interface,
over a small time interval (tn , tn+1). Since ũn is a solution to the conservation
law, (2) yields

vn+1
j =

1
h

∫ xj+1/2

xj−1/2

ũn (x , tn)d x (3)

−
1
h

(∫ tn+k

tn
f
(
ũn (

xj−1/2, t
))

d t −
∫ tn+k

tn
f
(
ũn (

xj−1/2, t
))

d t
)

.

(4)

First notice that vn
j = 1

h

∫xj+1/2
xj−1/2

ũn (x , tn)d x , since ũn satisfies (1).

• ũn
(
xj−1/2, ·

)
is constant over a small time window. Why?

• Unfortunately, evaluating the intermediate can be very expensive, and at times
impossible.

• This motivates the need to construct approximate Riemann solvers.
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Exercise Set #7 - Exercise 2

Exercise 2

• Consider the scalar conservation law

ut + f (u)x = 0 , (5)

and initial condition

u(x , 0) =

{
ul x < 0
ur 0 < x

, (6)

where the flux f is convex (f ′′ > 0).
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Exercise Set #7 - Exercise 2

Exercise 2: Part I

• Godunov’s method relies on finding the intermediate state u∗ = u∗(ul , ur) for
which u(0, t) = u∗, for t > 0.

• Show that this intermediate state is given by the following:

1. f ′(ul), f ′(ur) ⩾ 0 =⇒ u∗ = ul

2. f ′(ul), f ′(ur) ⩽ 0 =⇒ u∗ = ur

3. f ′(ul) ⩾ 0 ⩾ f ′(ur) =⇒ u∗ =

{
ul s > 0
ur s < 0

, s =
f (ur) − f (ur)

ur − ul

4. f ′(ul) < 0 < f ′(ur) =⇒ u∗ = um ,

where um is the solution to f ′ (um) = 0.
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Exercise Sheet #8 - Exercise 2
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Exercise Set #8 - Exercise 2 - Hints

Exercise 2 - Hints

• Suppose f ′(ul), f ′(ur) ⩾ 0.

• If ul > ur , the entropy solution is a shock moving at speed given by the RH
condition

s =
f (ul) − f (ur)

ul − ur
(7)

and f ′(ul) > s > f ′(ur) according to the entropy condition.

• This implies that the shock speed is positive, and thus we have u∗ = ul .

• If ul ⩽ ur , the entropy solution is a rarefaction wave.

• Since f ′(ul) > 0, the left front of the wave moves to the right, and thus
u∗ = ul .
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Exercise Set #8 - Exercise 2

Exercise 2: Part II

• Use (a) to show that Godunov’s flux is given by

F(ul , ur) =


min

ul⩽u⩽ur
f (u) ul ⩽ ur

max
ur⩽u⩽ul

f (u) ul > ur

. (8)

• Show that Godunov’s flux (8) is monotone.
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Exercise Set #7 - Exercise 2

Exercise 2: Part III

• Show that Godunov’s flux (8) is monotone.

• To show that Godunov’s flux, given by (8), is monotone, we show that it is
non-decreasing in its first argument and non-increasing in its second argument.

• If ul < ur and ϵ > 0 is small enough, then

F (ul + ϵ, ur) = min
ul+ϵ⩽u⩽ur

f (u) ⩾ min
ul⩽u⩽ur

f (u) = F(ul , ur) , (9)

and if ul ⩾ ur , then

F (ul + ϵ, ur) = max
ur⩽u⩽ul+ϵ

f (u) ⩾ max
ur⩽u⩽ul

f (u) = F(ul , ur) . (10)

Similarly, one can show that F is non-increasing in its second argument.
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Exercise Set #8 - Exercise 3

Exercise 3

• The purpose of this exercise is to illustrate the Lax-Wendroff Theorem.

• Convergence is not a conclusion of the Lax-Wendroff theorem.

• Also recall that in general weak solutions are not unique, so the theorem does
not guarantee the limit is the correct entropy solution.

• Consider a conservative method

vn+1
j = vn

j −
k
h

(
F
(
vn
j , vn

j+1
)
− F

(
vn
j−1, v

n
j
))

(11)

where the numerical flux F is given by

F (v ,w) =

f (v) f (v)−f (w)
v−w ⩾ 0

f (w) f (v)−f (w)
v−w < 0

. (12)
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Exercise Set #8 - Exercise 3

Exercise 3

• Construct the entropy solution to the following initial value problem

ut +

(
1
2
u2

)
x
= 0 u(x , 0) =

{
−1 x < 1
1 x > 1

. (13)

• Fix k/h = 0.5, and implement the above method to (13), in x ∈ (0, 2),
0 < t ⩽ 0.25, with the initial data discretized using cell averages.

• On the boundaries, set u(0, t) = −1, and u (2, t) = 1.

• Run the computations by choosing i) hl =
2
l , ii)hl =

2
2l , iii) hl =

2
2l+1 , for

l ∈ N.

• What can you deduce from your results regarding the each of the three
sequences of numerical solutions obtained?

• Explain your results and conclude how they fit with the Lax-Wendroff theorem.
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