Exercise Class #3 Numerical Methods for Conservation Laws

Professor: Martin Licht Assistant: Fernando Henríquez

Friday 13th of October, 2023

Exercise Class #3

Today's Topics: Exercise Set #3

- Methods of Characteristics (Continuation)
- Weak Solutions
- Entropy Solutions
- Rankine-Hugoniot Condition Questions?

Exercise 1: Method of Characteristics

Consider the conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad u(x,0) = u_0(x), \tag{1}$$

and
$$f(u) = u^2/2$$
.

Consider the following initial conditions

$$u_0(x) = \begin{cases} 1, & \text{for } x < -1, \\ 0, & \text{for } -1 < x < 1, \\ -1, & \text{for } x > 1 \end{cases}$$
 (2)

and

$$u_0(x) = \begin{cases} -1, & \text{for } x < -1, \\ 0, & \text{for } -1 < x < 1, \\ 1, & \text{for } x > 1. \end{cases}$$
 (3)

- \bullet Draw the profile of $u_0(x)$ and sketch the characteristics of the entropy solution u(x,t) in the x-t plane.
- Determine u(x, t) for all t > 0.

Theorem 4.12. Let $q \in C^2(\mathbb{R})$ be strictly convex and $q'' \ge h > 0$ or strictly concave and $q'' \le -h < 0$.

a) If q'' > h and $u_- > u_+$ or q'' < h and $u_- < u_+$, the unique entropy solution is given by the shock wave

$$u\left(x,t\right) = \begin{cases} u_{+} & x > \sigma\left(u_{-}, u_{+}\right) t \\ u_{-} & x < \sigma\left(u_{-}, u_{+}\right) t \end{cases} \tag{4.65}$$

where

$$\sigma(u_{-}, u_{+}) = \frac{q(u_{+}) - q(u_{-})}{u_{+} - u_{-}}.$$

b) If q'' > h and $u_- < u_+$ or q'' < -h and $u_- > u_+$, the unique entropy solution is given by the rarefaction wave

$$u\left(x,t\right) = \begin{cases} u_{-} & x < q'\left(u_{-}\right)t \\ r\left(\frac{x}{t}\right) & q'\left(u_{-}\right)t < x < q'\left(u_{+}\right)t \\ u_{+} & x > q'\left(u_{+}\right)t \end{cases}$$

where $r = (q')^{-1}$ is the inverse function of q'.

Exercise Sheet #3 - Exercise 1: Hints

Exercise 2: Method of Characteristics

• We start with the solution driven by the initial data

$$u_0(x) = egin{cases} 1 & x < -1 \\ 0 & -1 < x < 1 \\ -1 & x > 1 \end{cases}$$
 (4)

- ullet For Burger's equation, a shock forms if $u_l>u_r.$
- Both discontinuities in the initial function produce shocks.
- Shock's Speed? ⇒ Rankine-Hugoniot jump condition

$$s = \frac{f(u_l) - f(u_r)}{u_l - u_r} \ . \tag{5}$$

- The left shock moves to the right and the right shock moves to the left.
- From this we expect the two shocks to meet at x=0 at time t=2.

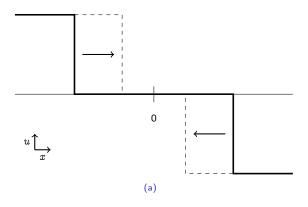


Figure: Initial data u_0 given by (4), applied to the inviscid burgers equation. The two shocks move towards each other and merge at x=0. At x=0 they form a new stationary shock. (a) Initial data. (b) Characteristics.

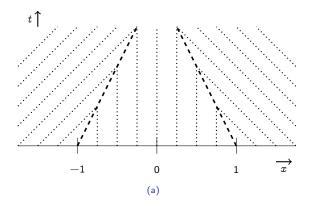


Figure: Initial data u_0 given by (4), applied to the inviscid burgers equation. The two shocks move towards each other and merge at x=0. At x=0 they form a new stationary shock. (a) Initial data. (b) Characteristics.

Exercise 2: Traffic Flow Equation

• Consider the traffic flow equation

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} f(q) = 0, \tag{6}$$

where q(x, t) is the car density

- ullet U(q) is the traffic speed as a function of the car density and f(q)=qU(q).
- A simple model for traffic flow is obtained by taking

$$U(q) = u_m \left(1 - \frac{q}{q_m} \right), \tag{7}$$

with $u_m>0$ and q_m being the maximum speed and maximum car density, respectively.

Exercise 2: Traffic Flow Equation

- If the car density is maximal, we say that the traffic is "bumper-to-bumper".
- At zero density (empty road), the traffic speed is u_m .
- ullet As q approaches q_m , the speed decreases to zero.
- The model then reads

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} u_m \left(q - \frac{q^2}{q_m} \right) = 0.$$
 (8)

We equip (8) with the initial condition

$$q(x,0) = \begin{cases} q_l, & \text{for } x < 0, \\ q_r, & \text{for } x > 0. \end{cases} \tag{9}$$

Exercise 2: Traffic Flow Equation

- (a) The green light problem.
 - \checkmark To represent this situation, we set $q_l=q_m$ and $q_r=0$ in (9).
 - \checkmark Draw the profile of $q_0(x)$ and sketch the characteristics of the entropy solution q(x,t) in the x-t plane, and determine u(x,t) for all t>0.
- (b) Traffic jam ahead.
 - \checkmark Consider $q_l = \frac{1}{8} q_m$ and $q_r = q_m$.
 - \checkmark The cars on the left move with speed $U=\frac{7}{8}u_m,$ so that we expect congestion.
- (c) **Entropy Solutions.** Show that for the traffic flow equation (8), the condition $q_l < q_r$ is required for a shock to be admissible. Verify:
 - (i) The entropy condition $f'(q_l) > s > f'(q_r)$.
 - (ii) There exists an entropy function $\eta(\mathit{q})$ and a corresponding entropy flux $\psi(\mathit{q})$ such that

$$s(\eta(q_r) - \eta(q_l)) \geqslant \psi(q_r) - \psi(q_l) \tag{10}$$

holds if and only if $q_l < q_r$.

Exercise Sheet #3 - Exercise 2: Hints

Exercise 2: The Green Light Problem.

- Observe that (8) can be written as $\frac{\partial q}{\partial t} + u_m \left(1 2\frac{q}{q_m}\right) \frac{\partial q}{\partial x} = 0$.
- Characteristics

$$\frac{dt(s)}{ds} = 1, \qquad \frac{dx(s)}{ds} = u_m \left(1 - 2\frac{q}{q_m}\right), \qquad \frac{dz(s)}{ds} = 0 \qquad (11)$$

Considering the starting point $(0, \xi, q_0(\xi))$ of the characteristic curve, we get

$$t(s) = s, \quad z(s) = q_0(\xi)$$
 (12)

• The solution to the problem is constant along the characteristic curve

$$x(t)=-u_mt+\xi$$
, for $\xi\leqslant 0$, $x(t)=u_mt+\xi$, for $\xi>0$. (13)

Rarefaction Wave

$$q(x,t) = \begin{cases} q_m & x < -u_m t \\ \frac{q_m}{2} \left(1 - \frac{x}{u_m t} \right) & -u_m t < x < u_m t \\ 0 & x \geqslant u_m t \end{cases}$$
 (14)

Exercise Sheet #3 - Exercise 2: Hints

Exercise 2: Entropy Solutions.

- For the sake of simplicity, we assume $q_m = 1$.
- The flux function f is given by $f(q) = u_m (q q^2)$.
- ullet We choose $\eta(q)=q^2$ as an entropy function. By

$$\psi^{\,\prime}({\it q})=\eta^{\,\prime}({\it q})f^{\,\prime}({\it q})$$

we deduce the corresponding entropy flux to be

$$\psi(q) = u_m \left(q^2 - \frac{4}{3} q^3 \right) .$$

• Insert ψ and η into

$$s\left(\eta\left(q_{r}\right)-\eta\left(q_{l}\right)\right)>\psi\left(q_{r}\right)-\psi\left(q_{l}\right)\tag{15}$$

Exercise 3: Liu's Entropy Condition

Consider the conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \tag{16}$$

where $f(u) = e^u$.

• We consider the Riemann problem

$$u_0(x) = \begin{cases} u_l, & \text{for } x < 0, \\ u_r, & \text{for } x > 0 \end{cases}$$
 (17)

- \checkmark Show that when u(x,t) is a weak solution and $\lambda > 0$, then $u(\lambda x, \lambda t)$ is a weak solution too.
- \checkmark Suppose that the solution has a shock wave with values u_l and u_r to the left and to the right, respectively. Which values u_l and u_r are admissible on the basis of Liu's entropy condition?

Exercise 3: Liu's Entropy Condition

 \bullet Liu's entropy condition means that a shock is admissible if the states u_l and u_r satisfy the condition

$$\frac{f(u^{\star}) - f(u_l)}{u^{\star} - u_l} \geqslant \frac{f(u_r) - f(u^{\star})}{u_r - u^{\star}}$$

$$\tag{18}$$

where $u^* \in (\min\{u_l, u_r\}, \max\{u_l, u_r\})$.

- This condition reflects that the characteristics must run into the shock.
- Requiring that the jump behind travels faster than the jump ahead, The flux $f(u)=e^u$ is strictly convex.
- ullet Therefore, to have an admissible shock one requires $u_l < u_r$.