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Exercise Class #3

Today’s Topics: Exercise Set #3

• Methods of Characteristics (Continuation)

• Weak Solutions

• Entropy Solutions

• Rankine-Hugoniot Condition Questions?
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Exercise Sheet #3 - Exercise 1

Exercise 1: Method of Characteristics

• Consider the conservation law

∂u
∂t

+
∂f (u)
∂x

= 0, u(x , 0) = u0(x), (1)

and f (u) = u2/2.

• Consider the following initial conditions

u0(x) =

 1, for x < −1,
0, for − 1 < x < 1,
−1, for x > 1

(2)

and

u0(x) =

 −1, for x < −1,
0, for − 1 < x < 1,
1, for x > 1.

(3)

• Draw the profile of u0(x) and sketch the characteristics of the entropy solution
u(x , t) in the x − t plane.

• Determine u(x , t) for all t > 0.
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Exercise Sheet #3 - Exercise 1: Hints

Exercise 2: Method of Characteristics

• We start with the solution driven by the initial data

u0(x) =


1 x < −1
0 −1 < x < 1
−1 x > 1

. (4)

• For Burger’s equation, a shock forms if ul > ur .

• Both discontinuities in the initial function produce shocks.

• Shock’s Speed? ⇒ Rankine-Hugoniot jump condition

s =
f (ul) − f (ur)

ul − ur
. (5)

• The left shock moves to the right and the right shock moves to the left.

• From this we expect the two shocks to meet at x = 0 at time t = 2.
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u
x
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(a)

Figure: Initial data u0 given by (4), applied to the inviscid burgers equation. The two
shocks move towards each other and merge at x = 0. At x = 0 they form a new
stationary shock. (a) Initial data. (b) Characteristics.
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(a)

Figure: Initial data u0 given by (4), applied to the inviscid burgers equation. The two
shocks move towards each other and merge at x = 0. At x = 0 they form a new
stationary shock. (a) Initial data. (b) Characteristics.
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Exercise 2: Traffic Flow Equation

• Consider the traffic flow equation

∂q
∂t

+
∂

∂x
f (q) = 0, (6)

where q(x , t) is the car density

• U(q) is the traffic speed as a function of the car density and f (q) = qU(q).

• A simple model for traffic flow is obtained by taking

U(q) = um

(
1 −

q
qm

)
, (7)

with um > 0 and qm being the maximum speed and maximum car density,
respectively.
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Exercise 2: Traffic Flow Equation

• If the car density is maximal, we say that the traffic is “bumper-to-bumper”.

• At zero density (empty road), the traffic speed is um .

• As q approaches qm , the speed decreases to zero.

• The model then reads

∂q
∂t

+
∂

∂x
um

(
q −

q2

qm

)
= 0. (8)

We equip (8) with the initial condition

q(x , 0) =

{
ql , for x < 0,
qr , for x > 0.

(9)

Fernando Henríquez Numerical Methods for Conservations Laws Friday 13th of October, 2023 9 / 14



Exercise Sheet #3 - Exercise 2
Exercise 2: Traffic Flow Equation

(a) The green light problem.

✓ To represent this situation, we set ql = qm and qr = 0 in (9).

✓ Draw the profile of q0(x) and sketch the characteristics of the entropy
solution q(x , t) in the x − t plane, and determine u(x , t) for all t > 0.

(b) Traffic jam ahead.

✓ Consider ql =
1
8 qm and qr = qm .

✓ The cars on the left move with speed U = 7
8um , so that we expect

congestion.

(c) Entropy Solutions. Show that for the traffic flow equation (8), the condition
ql < qr is required for a shock to be admissible. Verify:

(i) The entropy condition f ′(ql) > s > f ′(qr).

(ii) There exists an entropy function η(q) and a corresponding entropy flux
ψ(q) such that

s(η(qr) − η(ql)) ⩾ ψ(qr) −ψ(ql) (10)

holds if and only if ql < qr .
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Exercise 2: The Green Light Problem.

• Observe that (8) can be written as ∂q
∂t + um

(
1 − 2 q

qm

)
∂q
∂x = 0.

• Characteristics

dt(s)
ds

= 1,
dx(s)

ds
= um

(
1 − 2

q
qm

)
,

dz(s)
ds

= 0 (11)

Considering the starting point (0,ξ, q0(ξ)) of the characteristic curve, we get

t(s) = s, z(s) = q0(ξ) (12)

• The solution to the problem is constant along the characteristic curve

x(t) = −um t + ξ, for ξ ⩽ 0, x(t) = um t + ξ, for ξ > 0. (13)

• Rarefaction Wave

q(x , t) =


qm x < −um t

qm
2

(
1 − x

um t

)
−um t < x < um t

0 x ⩾ um t

(14)
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Exercise 2: Entropy Solutions.

• For the sake of simplicity, we assume qm = 1.

• The flux function f is given by f (q) = um
(
q − q2

)
.

• We choose η(q) = q2 as an entropy function. By

ψ′(q) = η′(q)f ′(q)

we deduce the corresponding entropy flux to be

ψ(q) = um

(
q2 −

4
3
q3

)
.

• Insert ψ and η into

s (η (qr) − η (ql)) > ψ(qr) −ψ(ql) (15)

Fernando Henríquez Numerical Methods for Conservations Laws Friday 13th of October, 2023 12 / 14



Exercise Sheet #3 - Exercise 3

Exercise 3: Liu’s Entropy Condition

• Consider the conservation law

∂u
∂t

+
∂f (u)
∂x

= 0 (16)

where f (u) = eu .

• We consider the Riemann problem

u0(x) =

{
ul , for x < 0,
ur , for x > 0

(17)

✓ Show that when u(x , t) is a weak solution and λ > 0, then u(λx ,λt) is
a weak solution too.

✓ Suppose that the solution has a shock wave with values ul and ur to the
left and to the right, respectively. Which values ul and ur are admissible
on the basis of Liu’s entropy condition?
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Exercise 3: Liu’s Entropy Condition

• Liu’s entropy condition means that a shock is admissible if the states ul and ur
satisfy the condition

f (u⋆) − f (ul)

u⋆ − ul
⩾

f (ur) − f (u⋆)

ur − u⋆
(18)

where u⋆ ∈ (min{ul , ur }, max{ul , ur }).

• This condition reflects that the characteristics must run into the shock.

• Requiring that the jump behind travels faster than the jump ahead, The flux
f (u) = eu is strictly convex.

• Therefore, to have an admissible shock one requires ul < ur .
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