Exercise Class #2 Numerical Methods for Conservation Laws

Professor: Martin Licht Assistant: Fernando Henríquez

Friday 6th of October, 2023

Exercise Class #2

Today's Topics: Exercise Set #2

- Methods of Characteristics (Continuation)
- Weak Solutions
- Entropy Solutions
- Rankine-Hugoniot Condition
- Questions?

Exercise 1: Method of Characteristics

- Suppose that the flux f(u, x, t) is differentiable in all variables.
- Find curves along which the conservation law

$$\frac{\partial u(x,t)}{\partial t} - x \frac{\partial f(u(x,t),x,t)}{\partial x} = 0$$

can be written as a collection of ODEs.

Exercise 2: Method of Characteristics

(i) Consider the conservation law

$$\frac{\partial u}{\partial t} - x \frac{\partial u}{\partial x} = 0 \tag{1}$$

with initial value

$$u(x,0)=x. (2)$$

Sketch the characteristics up to time t=1. Describe the graph of the function $u(\cdot,t)$ as t increases.

(ii) Consider the conservation law

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = 0 \tag{3}$$

with initial value

$$u(x,0) = x. (4)$$

Draw the characteristics and describe the graph of the function $u(\cdot,t)$ as t increases.

Exercise Sheet #2 - Exercise 2: Hints

Exercise 2: Method of Characteristics

• Set F(t, x, z) = u(x, t) - z, hence the solution of the conservation law

$$\frac{\partial u}{\partial t} - x \frac{\partial u}{\partial x} = 0 \tag{5}$$

- Observe that 5 can be written as $\begin{pmatrix} \frac{\partial u}{\partial t} \\ \frac{\partial u}{\partial x} \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -x \\ 0 \end{pmatrix} = 0.$
- We get the following set of ODEs describing the characteristic curve

$$\frac{dt(s)}{ds} = 1$$
, $\frac{dx(s)}{ds} = -x$, and $\frac{dz(s)}{ds} = 0$. (6)

Solution

$$t(s) = s$$
, $x(s) = \xi \exp(-s)$, and $z(s) = u_0(\xi)$. (7)

From F(t, x, z) = 0, we get that

$$u(x,t) = u_0(\xi) = u_0(x \exp(t)) = x \exp(t).$$
 (8)

Exercise Sheet #2 - Exercise 3: Hints

Exercise 3: Weak Solutions

Show that a weak solution to the linear transport equation

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0,$$

with $a \in \mathbb{R}$ and initial data

$$u(x,0) = \begin{cases} 1, & \text{for } x < 0, \\ 0, & \text{for } x > 0, \end{cases} \tag{9}$$

is given by

$$u(x,t) = \begin{cases} 1, & \text{for } x < at, \\ 0, & \text{for } x > at, \end{cases}$$
 (10)

Exercise Sheet #2 - Exercise 3: Hints

Exercise 3: Weak Solutions

• We need to prove that for all test functions $\varphi \in C^1(\mathbb{R} \times [0,\infty))$ with compact support, it holds

$$\int\limits_0^\infty \int\limits_{-\infty}^\infty \left(\frac{\partial \varphi}{\partial t} u + \frac{\partial \varphi}{\partial x} f(u)\right) \mathrm{d}x \mathrm{d}t = -\int\limits_{-\infty}^\infty \varphi(x,0) u(x,0) \mathrm{d}x, \qquad (11)$$

where f(u) = au in the case of this exercise.

- Assume without loss of generality that a > 0.
- Then we calculate

$$\int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \phi}{\partial t} u \, dx dt = \int_{-\infty}^{0} \int_{0}^{\infty} \frac{\partial \phi}{\partial t} dt dx + \int_{0}^{\infty} \int_{x/a}^{\infty} \frac{\partial \phi}{\partial t} dt dx$$

$$= -\int_{-\infty}^{0} \phi(x,0) dx - \int_{0}^{\infty} \phi\left(x,\frac{x}{a}\right) dx,$$
(12)

• You may continue by yourself...

Exercise 4: Method of Characteristics

• Consider the initial value problem

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad u(x,0) = u_0(x), \tag{13}$$

with $f(u) = \frac{u^2}{2}$, and

$$u_0(x) = \begin{cases} 2, & 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$
 (14)

- Here a rarefaction wave arises at one discontinuity and a shock at the other.
- The goal of this exercise is to determine the exact solution for all t > 0.
- In this setup, the rarefaction wave catches up with the shock at some time $T_c>0$.

Exercise 4: Shocks and Rarefactions Waves

Consider the initial value problem

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad u(x,0) = u_0(x), \tag{15}$$

with $f(u) = \frac{u^2}{2}$, and

$$u_0(x) = \begin{cases} 2, & 0 < x < 1, \\ 0, & \text{otherwise,} \end{cases}$$
 (16)

- (i) Draw the profile of $u_0(x)$ and sketch the characteristics in the strip $0 < t < T_c$ of the x-t plane.
- (ii) Determine the exact solution for $0 < t < T_c$.
- (iii) Let $x_s(t)$ be shock's location at $t>T_c$. By using the Rankine-Hugoniot jump condition construct an ODE to determine $x_s(t)$ for all $t>T_c$. In the sketch you drew in (i), extend the characteristic lines to $t>T_c$.

Theorem 4.12. Let $q \in C^2(\mathbb{R})$ be strictly convex and $q'' \ge h > 0$ or strictly concave and $q'' \le -h < 0$.

a) If q'' > h and $u_- > u_+$ or q'' < h and $u_- < u_+$, the unique entropy solution is given by the shock wave

$$u\left(x,t\right) = \begin{cases} u_{+} & x > \sigma\left(u_{-}, u_{+}\right) t \\ u_{-} & x < \sigma\left(u_{-}, u_{+}\right) t \end{cases} \tag{4.65}$$

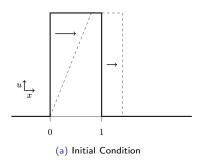
where

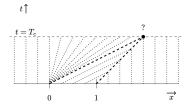
$$\sigma(u_{-}, u_{+}) = \frac{q(u_{+}) - q(u_{-})}{u_{+} - u_{-}}.$$

b) If q'' > h and $u_- < u_+$ or q'' < -h and $u_- > u_+$, the unique entropy solution is given by the rarefaction wave

$$u\left(x,t\right) = \begin{cases} u_{-} & x < q'\left(u_{-}\right)t \\ r\left(\frac{x}{t}\right) & q'\left(u_{-}\right)t < x < q'\left(u_{+}\right)t \\ u_{+} & x > q'\left(u_{+}\right)t \end{cases}$$

where $r = (q')^{-1}$ is the inverse function of q'.





(b) Characteristics up until the rarefaction wave catches the shock.

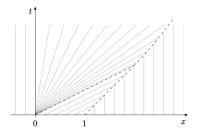


Figure: The characteristic curves (gray lines) of u in the x-t plane.