
Numerical methods for conservation laws
8: Monotone Schemes



We have

▪ introduced finite difference schemes

▪ discussed conservative schemes

▪ given examples for numerical fluxes

▪ proven that limits of such schemes are weak solutions

We now discuss monotone schemes as an important special class.



Up to now, we have numerical schemes that produce a sequence of 
states, indexed over the time indices, starting with the initial values:

𝑈0, 𝑈1, 𝑈2, … , 𝑈𝑛−1, 𝑈𝑛, 𝑈𝑛+1, …

Every state is constructed from its predecessor. We write this as 

𝑈𝑛+1 = 𝐺 𝑈𝑛

We call the numerical scheme 𝐺 monotone if 

𝑈 ≤ 𝑉 implies    𝐺 𝑈 ≤ 𝐺(𝑉)



Why does monotonicity matter? (1/3)

1) For many conservation laws, 𝑢0 ≤ 𝑣0 at the initial data 
implies that 𝑢 𝑡 ≤ 𝑣 𝑡 for all subsequent times.

If the scheme is monotone, then U0 ≤ 𝑉0 implies

𝑈1 ≤ 𝑉1, 𝑈2 ≤ 𝑉2, … , 𝑈𝑛 ≤ 𝑉𝑛, …

In other words, monotone schemes reproduce a maximum 
principle at the discrete level.



Why does monotonicity matter? (2/3)

2) Suppose we have a monotone consistent conservative scheme
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Any state vector with contant values 𝑉𝑗
𝑛 = 𝑈max is preserved 

under this scheme.

If 𝑈0 ≤ 𝑈𝑚𝑎𝑥, then 𝑈𝑛 ≤ 𝑈𝑚𝑎𝑥 for all subsequent time steps.

Similarly for lower bounds of 𝑈…



Why does monotonicity matter? (3/3)

3) Lastly, if a scheme is not monotone, then we may expect 
uncontrolled growth of the solution. 

Important observation
A numerical scheme 𝐺 is monotone if and
only if 𝐺(𝑈) is non-decreasing in each
variable 𝑈𝑗.



Example (Transport Equation)

The FTBS scheme is 
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For the scheme to be monotone we need the right-hand side is non-
decreasing in 𝑈𝑗

𝑛 and 𝑈𝑗−1
𝑛 . That is,

1. 𝑐 ≥ 0 (all waves travel to the right, upwinding)

2. 𝑐 ≤
ℎ

𝑘
(time step can’t be too large)



Example (Burger’s Equation)

The FTBS scheme for Burgers’ equation is 
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Provided that 
1. 𝑈𝑗 is positive

2. 2𝑈𝑗 ≤
ℎ

𝑘

the scheme “behaves” monotone. In other words, all waves travel to the 
right (upwinding) and not faster than the mesh velocity.



Let us focus on the case of a finite difference scheme in where the 
numerical fluxes only depend on the immediate neighbors.

We also write with some minor abuse of notation:



We call the scheme monotone if G is non-decreasing in each argument. 
Let's express that in terms of the differentials.

The first and the third inequality are equivalent to F non-decreasing in its first 
argument and non-increasing in its second argument.

The second inequality requires that the quotient k/h must be sufficiently small, in 
particular, the time step must be smaller than the space step. 



We verify those three conditions with the Lax-Friedrich flux
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where 𝛼 is the maximum norm of 𝑓′. The first two conditions hold:
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We check the third condition:
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Apparently, the third condition says
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In other words, the time step must be small enough such that 

𝑘𝛼 ≤ ℎ

The higher the first derivative of the flux, the smaller the time step necessary 
to ensure the scheme is monotone. The “grid speed” ℎ/𝑘 must be at least as 
large as the physical speed.

Such conditions are known as Courant–Friedrichs–Lewy (CFL) conditions.



What about the Lax-Wendroff flux?
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This is generally not monotone. For example, when 𝑓 𝑢 = 𝑢2, then
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With some calculations, we find that 
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For example, when 𝑢 ≪ |𝑣| and 𝑣 is negative, then this derivative is negative.

We conclude that the Lax-Wendroff flux is generally not monotone.



Theorem

Suppose that 𝐺 is a conservative monotone scheme.

Then 𝐺 is L1 contractive.

We call a numerical scheme G L1 contractive if
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Theorem

Suppose that 𝐺 is L1 contractive. Then 𝐺 is TVD.

Proof

Given 𝑈, we define 𝑉 by 𝑉𝑗 = 𝑈𝑗+1. Then the L1 contraction applied to 𝑈 and 𝑉
implies
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We call a numerical scheme G total variation diminishing (TVD) if
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We have shown that monotone schemes replicate 
important properties of the original physical system:

• maximum principles

• L1-contraction

• TV-diminishment.

We now study the connection to entropy solutions.













Intuitively, this prevents the emergence of spurious oscillations.

We call a numerical scheme G monotonicity preserving (MP) if it maps monotonely
increasing sequences to monotonely increasing sequences.

More explicitly,

Recall that schemes (in practice) are defined via local stencils.

If 𝐺 is MP, then the following is true for all indices 𝑖 < 𝑗:

If 𝑈𝑖−𝑝, … , 𝑈𝑗+𝑞 increases monotonely, then so does 𝐺(𝑈)𝑖 , … , 𝐺(𝑈)𝑗.



Theorem

Suppose that a scheme 𝐺 is TVD. Then 𝐺 is MP.





In simple terms:

Monotone schemes preserve the order of solutions in terms of amplitudes. 

L1 contractive schemes decrease the differences between solutions over 
time.

TVD schemes do not accentuate existing extrema or create to many new 
ones. 

Monotonicity-preserving schemes do not produce new undershoots and 
overshoots in the solution.



Summary of important properties:







Lemma: for a linear scheme 𝐺, the following are equivalent:

1. 𝐺 is monotone

2. 𝐺 is monotonicity-preserving

3. 𝐺 is has only non-negative coefficients. 



We have studied important qualitative properties of finite-difference 
schemes:

• Monotonicity

• L1 contraction

• TV-diminishing

• MP

And the implications between those.

However, there are intrinsic limitations of monotone schemes. To 
understand those, we need to address the error analysis.
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