Numerical methods for conservation laws
8: Monotone Schemes




We have

" introduced finite difference schemes

" discussed conservative schemes

" given examples for numerical fluxes

" proven that limits of such schemes are weak solutions

We now discuss monotone schemes as an important special class.



Up to now, we have numerical schemes that produce a sequence of
states, indexed over the time indices, starting with the initial values:

ul,ut,u?, ..., untun, untt .
Every state is constructed from its predecessor. We write this as

Un+1 — G(Un)

We call the numerical scheme ¢ monotone if

U<V implies GU) <GV



Why does monotonicity matter? (1/3)

1) For many conservation laws, uy < v, at the initial data
implies that u(t) < v(t) for all subsequent times.

If the scheme is monotone, then U° < VY implies
Ut <vt, uz<vs .., Ut<vyn

In other words, monotone schemes reproduce a maximum
principle at the discrete level.



Why does monotonicity matter? (2/3)
2) Suppose we have a monotone consistent conservative scheme

Uit = U-"——(F_" — F" )

Any state vector with contant values V;* = U™“" is preserved
under this scheme.

If UY < U™ then U™ < U™ for all subsequent time steps.

Similarly for lower bounds of U...



Why does monotonicity matter? (3/3)

3) Lastly, if a scheme is not monotone, then we may expect
uncontrolled growth of the solution.

Important observation
A numerical scheme G is monotone if and

only if G(U) is non-decreasing in each
variable U;.



Example (Transport Equation)
The FTBS scheme is

k k k
+1 _ _
Urtt = yr — Cﬁ(Ufn —-Ul,) = (1 — Cﬁ) U + cy [

For the scheme to be monotone we need the right-hand side is non-
decreasing in U;* and U™ ;. That is,

1. ¢ = 0 (all waves travel to the right, upwinding)

h .. ,
2 c< P (time step can’t be too large)



Example (Burger’s Equation)

The FTBS scheme for Burgers’ equation is

k k k
an+1 = U]ﬂ - E((U]n)z — (U}l—ﬂz) = (U]?" o ﬁ (U]n)z) + E (U}l—1)2

Provided that

1. Ujis positive

2. 205 <2

the scheme “behaves” monotone. In other words, all waves travel to the
right (upwinding) and not faster than the mesh velocity.



Let us focus on the case of a finite difference scheme in where the
numerical fluxes only depend on the immediate neighbors.

n it _ \ - \( " Y
" ¢ 'E( Py T \_:r‘s.)
= U] — &k - o
J _{n_( F(UOEUJ“) — F(Uj_l, UJ> )
= G( YL, U, U

We also write with some minor abuse of notation:

G(u"), = G( U, v, UL

l]el[f J u..[.[



We call the scheme monotone if G is non-decreasing in each argument.
Let's express that in terms of the differentials.

O g 96 _ 1{ — '\1 "
S5 = 9, F[ Uz, Ul )
S _
0 < a ;" - I—"\a éF(U\JEU\th_aF( "J)
0 <« 36 _  _ k Y
aUTH B A SZF(UJ ’ULI“)

The first and the third inequality are equivalent to F non-decreasing in its first
argument and non-increasing in its second argument.

The second inequality requires that the quotient k/h must be sufficiently small, in
particular, the time step must be smaller than the space step.



We verify those three conditions with the Lax-Friedrich flux

1 a
Fir(u,v) = (f+f() -5 @ -w
where a is the maximum norm of f'. The first two conditions hold:

1 a
0, F (u,v) =§f’(u) +52 0

d,F (u, v) =%f’(v) —% <0

We check the third condition:

01— (f (W) —a—fW)-a)=1-a



Apparently, the third condition says

0<1 X
< P @

In other words, the time step must be small enough such that

ka < h

The higher the first derivative of the flux, the smaller the time step necessary
to ensure the scheme is monotone. The “grid speed” h/k must be at least as
large as the physical speed.

Such conditions are known as Courant—Friedrichs—Lewy (CFL) conditions.



What about the Lax-Wendroff flux?

1 k
Fuw,v) =5 (F@) + F @) = 5= 1 (S22 @) = Fw)

This is generally not monotone. For example, when f(u) = u?, then

u? +v* k
F(u,v) = > —Zh-(u+v)(v2—u2)

With some calculations, we find that
k
0, F(u,v) =u— > (—3u? — 2uv + v?)

For example, when |u| < |v| and v is negative, then this derivative is negative.
We conclude that the Lax-Wendroff flux is generally not monotone.



We call a numerical scheme G L1 contractive if

E\G(U)j -G < E\UJ —Vjl
7 7

Theorem
Suppose that G is a conservative monotone scheme.
Then G is L1 contractive.
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We call a numerical scheme G total variation diminishing (TVD) if

2|G(U)j ~G(V)j4a] < 2|UJ ~ Uji]
j j

Theorem
Suppose that G is L1 contractive. Then G is TVD.

Proof
Given U, we define V by V; = U;, 1. Then the L1 contraction applied to U and V/

implies
D 16W); = 6W)jaal < ) |U; = Ui

J J



We have shown that monotone schemes replicate
important properties of the original physical system:

* maximum principles
 L1-contraction
e TV-diminishment.

We now study the connection to entropy solutions.



\/\/e, Wy e

MaC = WMh(uc),

UvC = wax( Y c)

and S(Vnilctv(\-] foy V€c+ors, ~E\,c|-./\7b\/|-98,

Re.cu] (avuu( vewvi+e) the

Wu) = lv-c| =

KVUszv '€,V\+VOF7 Fai\/.S

lf/(u) = scyn(u—c)[F(U)—F(c)) - ‘E(U"C) - ‘C(L“C)



\’\/E CA{"F;V\Q’ «© U“SCV*E,]LQ €w+vo,a7 Pa{v.

Y, = ) = Yy — UPnc
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We call a numerical scheme G monotonicity preserving (MP) if it maps monotonely
increasing sequences to monotonely increasing sequences.

More explicitly,

V\) UJ < UJ'H = \_/J G(U) = G(U)

J Jt!

Intuitively, this prevents the emergence of spurious oscillations.

Recall that schemes (in practice) are defined via local stencils.

G(u), = | - |
| Gl Uy, 0 Uj Uprg )
If G is MP, then the following is true for all indices i < j:

If U;_p, ..., Uj4q increases monotonely, then so does G(U);, ..., G(U);.



Theorem
Suppose that a scheme G is TVD. Then G is MP.

\)voo{; SU\OFOSe +thhei G s TVD. Considev Hie Se«luev\ce

T U- foge )’
i Wonorlwwt\] f ) ¢ J-é 3-!-
U+ I-F 3+ < J
_“«Q_ EV\‘HVQ S‘E'b]U{{v\Ce ',v\(,vfusgs VV]OV\(HOV\-QL\]. H5 40+a[ \/uv"u'l'.lOV\. -'S.'

TV(U) = Ut — U~



Now Su[’\oose Hais TVD  scheme s not MP.
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In simple terms:
Monotone schemes preserve the order of solutions in terms of amplitudes.

L1 contractive schemes decrease the differences between solutions over
time.

TVD schemes do not accentuate existing extrema or create to many new
ones.

Monotonicity-preserving schemes do not produce new undershoots and
overshoots in the solution.



Summary of important properties:

e

M onoiong, = \J Contvaction = T\/ D = M P
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Lemma: for a linear scheme G, the following are equivalent:

1. G is monotone
Z. G is monotonicity-preserving
3. G is has only non-negative coefficients.

M ovotong => L‘ Contvuction —

\ /
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We have studied important qualitative properties of finite-difference
schemes:

* Monotonicity
* L1 contraction
* TV-diminishing
* MP

And the implications between those.

However, there are intrinsic limitations of monotone schemes. To
understand those, we need to address the error analysis.
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