Numerical methods for conservation laws
6: Finite Difference Schemes




Having recapitulated the essentials of the theory of conservation laws,
we now address numerical methods.

We begin with finite difference schemes.



We introduce a few basic numerical
schemes for the conservation law

diu+0,.f(u) =0

We work over a finite space-time domain
Q, X Q,

'Q'x = [A, B], ‘Q't = [O' T]

We introduce

* nodal points over (1, of equal distance h

* time steps over (; over equal distance k.

We approximate the true
solution by computing values
U;" on the space-time grid.
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Specifically,
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ktj = A+ d]"l r ) = Oy -4 N h =

.Eh

]

n-k h= 0,... K k= /k

This defines the discretization of space and time.

The function u is discretized by associating the value U}1 to the space-time node (x;, t™).

Given the data and boundary conditions, we want to compute values Uj" such that
LJMl ~ h

How do we define U}"?



Recall finite differences: we approximate the derivatives in the
conservation law by difference quotients
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Application: we replace the actual derivatives by finite differences.
Then we isolate variables so that we can compute Uf step by step.



Example: Transport equation with constant speed

o;u+ ad,u =0, u(x,0) = uy(x)

1) We consider the scheme Forward-Time Backward-Space (FTBS):
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We isolate the variable U"**, leading to
ak
n+l _ yyn _ n_ gym
U = Ut = — (U] = UL

Starting with UjO = Uy (x;), we compute the solution timestep by timestep.



2) Alternatively, we use the scheme Forward-Time Forward-Space (FTFS):

yntl _ pyn n_o_pyn
Jeu+ad,u=0 J L 4 q2 L =0
k h
Isolating UT*** again, we get
an+1 ( j+1  Yj )

3) Similarly, we can define Forward-time centered space...

Does the choice of method make a difference?



Suppose we simulate the transport equation constant speed a = 1.

The finite-difference scheme should match the flow of information.
Not only the direction matters, but also the speed.
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This is called upwinding: the first-order derivatives should be
discretized such that the discrete flow of information matches
the physical flux direction.



Summary (Transport equation):

We have a few finite-difference schemes with forward difference

guotients in time.
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We could also backward difference quotients in time (BTBS,BTFS,BTCS).
That requires solving a linear system at each step.



Example: Burgers’ equation
Recall that Burgers’ equation has two equivalent forms

du+0,(u?) =0 < oJu+2u-d,u=0

These inspire two different finite-difference schemes. For example, FTBS:
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Let (0 = [0,1] with periodic BC,h = k = 1/100 and uy = 1 + sin(2mx).
The first scheme works reasonably well, the second one does not. Why?
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