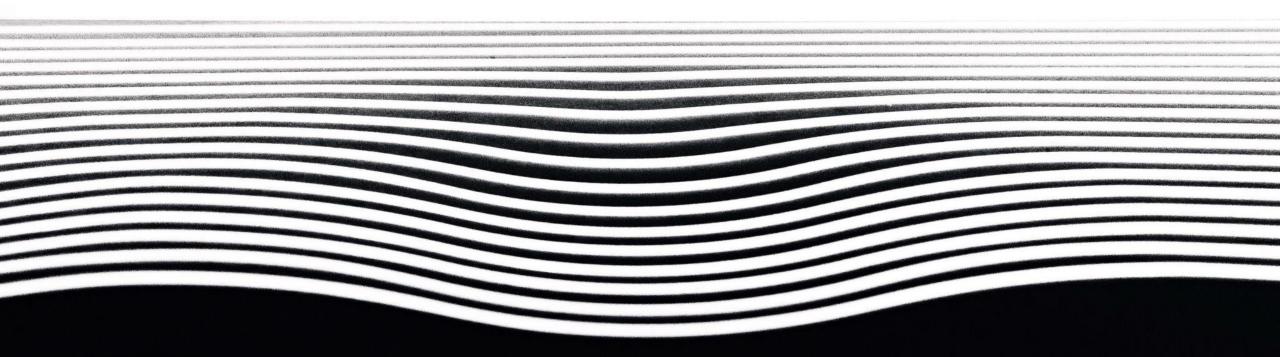
Numerical methods for conservation laws 6: Finite Difference Schemes



Having recapitulated the essentials of the theory of conservation laws, we now address numerical methods.

We begin with finite difference schemes.

We introduce a few basic numerical schemes for the conservation law

$$\partial_t u + \partial_x f(u) = 0$$

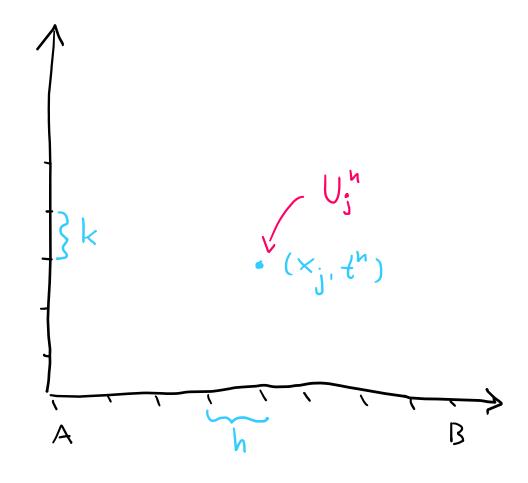
We work over a finite space-time domain $\Omega_x \times \Omega_t$,

$$\Omega_{\chi} = [A, B], \qquad \Omega_{t} = [0, T]$$

We introduce

- nodal points over Ω_{χ} of equal distance h
- time steps over Ω_t over equal distance k.

We approximate the true solution by computing values U_j^n on the space-time grid.



Specifically,

$$x_j = A + j \cdot h$$
, $j = 0, ..., N$ $h = \frac{B - A}{N}$
 $t^n = n \cdot k$, $n = 0, ..., K$ $k = \frac{T}{K}$

This defines the discretization of space and time.

The function u is discretized by associating the value U_j^n to the space-time node (x_j, t^n) .

Given the data and boundary conditions, we want to compute values U_j^n such that

$$U_{j}^{n} \approx u(\times_{j}, t^{n})$$

How do we define U_j^n ?

Recall finite differences: we approximate the derivatives in the conservation law by difference quotients

Forward Difference:

$$\partial_{x}u(x_{j},\epsilon^{n}) \approx \underbrace{U_{j+1}^{n} - U_{j-1}^{n}}_{h} + O(h)$$

$$\partial_{\xi} \mathcal{U}(x_{j}, t^{n}) \approx \frac{U_{j}^{n+1} - U_{j}^{n}}{k}$$

Backward Difference

$$\partial_{x} u(x_{j}, t^{n}) \approx \frac{U_{j}^{n} - U_{j-1}^{n}}{h} + \mathcal{O}(h)$$

$$\partial_{\xi} u(x_{j}, \xi^{n}) \approx \underline{U}_{j}^{n} \underline{-U}_{j}^{n-1}$$

Central Difference

$$\partial_{x} u(x_{j}, t^{\eta}) \approx \frac{\bigcup_{j=1}^{n} - \bigcup_{j=1}^{n} + O(h^{2})}{2h}$$

$$\left(\begin{array}{ccc} \partial_t u(\times_j, t^n) & \approx & \underline{U}_{j}^{n+1} & \underline{U}_{j-1}^{n-1} \end{array}\right)$$

Application: we replace the actual derivatives by finite differences. Then we isolate variables so that we can compute U_j^n step by step.

Example: Transport equation with constant speed

$$\partial_t u + a \partial_x u = 0, \qquad u(x,0) = u_0(x)$$

1) We consider the scheme Forward-Time Backward-Space (FTBS):

$$\partial_t u + a \partial_x u = 0 \qquad \longleftrightarrow \qquad \frac{U_j^{n+1} - U_j^n}{k} + a \frac{U_j^n - U_{j-1}^n}{h} = 0$$

We isolate the variable U_j^{n+1} , leading to

$$U_j^{n+1} = U_j^n - \frac{ak}{h} (U_j^n - U_{j-1}^n)$$

Starting with $U_i^0 = u_0(x_i)$, we compute the solution timestep by timestep.

2) Alternatively, we use the scheme Forward-Time Forward-Space (FTFS):

$$\partial_t u + a \partial_x u = 0 \qquad \longleftrightarrow \qquad \frac{U_j^{n+1} - U_j^n}{k} + a \frac{U_{j+1}^n - U_j^n}{h} = 0$$

Isolating U_j^{n+1} again, we get

$$U_j^{n+1} = U_j^n - \frac{ak}{h} (U_{j+1}^n - U_j^n)$$

3) Similarly, we can define Forward-time centered space...

Does the choice of method make a difference?

Suppose we simulate the transport equation constant speed a=1.

The finite-difference scheme should match the flow of information. Not only the direction matters, but also the speed.

This is called **upwinding**: the first-order derivatives should be discretized such that the discrete flow of information matches the physical flux direction.

Summary (Transport equation):

We have a few finite-difference schemes with forward difference quotients in time.

FT BS
$$U_{j}^{n+1} = U_{j}^{n} - c \frac{k}{h} (U_{j}^{n} - U_{j-1}^{n})$$

FT FS $U_{j}^{n+1} = U_{j}^{n} - c \frac{k}{h} (U_{j+1}^{n} - U_{j}^{n})$

FT CS $U_{j}^{n+1} = U_{j}^{n} - \frac{ck}{2h} (U_{j+1}^{n} - U_{j-1}^{n})$

We could also backward difference quotients in time (BTBS,BTFS,BTCS). That requires solving a linear system at each step.

Example: Burgers' equation

Recall that Burgers' equation has two equivalent forms

$$\partial_t u + \partial_x (u^2) = 0 \iff \partial_t u + 2u \cdot \partial_x u = 0$$

These inspire two different finite-difference schemes. For example, FTBS:

$$\frac{1}{k} \left(U_{j}^{n+1} - U_{j}^{n} \right) + \frac{\left(U_{j}^{n} \right)^{2} - \left(U_{j-1}^{n} \right)^{2}}{k} = 0 \qquad U_{j}^{n+1} = U_{j}^{n} - \frac{k}{k} \left(\left(U_{j}^{n} \right)^{2} - \left(U_{j-1}^{n} \right)^{2} \right)$$

$$\frac{1}{k}(U_{j}^{n+1}-U_{j}^{n})+\frac{2U_{j}^{n}}{k}(U_{j}^{n}-U_{j-1}^{n})=0 \qquad U_{j}^{n+1}=U_{j}^{n}-\frac{2k}{k}U_{j}^{n}(U_{j}^{n}-U_{j-1}^{n})$$

Let $\Omega = [0,1]$ with periodic BC, h = k = 1/100 and $u_0 = 1 + \sin(2\pi x)$. The first scheme works reasonably well, the second one does not. Why?

$$\sum_{j} U_{j}^{n+1} = \sum_{j} U_{j}^{n} - \frac{k}{h} \sum_{j} (U_{j}^{n})^{2} - (U_{j-1}^{n})^{2}$$

$$\sum_{j} U_{j}^{n+1} = \sum_{j} U_{j}^{n} - \frac{2k}{h} \sum_{j} U_{j}^{n} (U_{j}^{n} - U_{j-1}^{n})$$

$$= \sum_{j} U_{j}^{n} - \frac{2k}{h} \sum_{j} (U_{j}^{n})^{2} + \frac{2k}{h} \sum_{j} U_{j}^{n} U_{j-1}^{n}$$

$$= \sum_{j} U_{j}^{n} - \frac{2k}{h} \sum_{j} (U_{j}^{n})^{2} + \frac{2k}{h} \sum_{j} U_{j}^{n} U_{j-1}^{n}$$