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Agenda

* We were confronted with the problem that conservation laws admit
multiple weak solutions. How to choose the physical weak solution?

* For a scalar conservation law in 1D, we discussed exclusion criteria (Lax
entropy condition, Liu entropy condition)

* We defined entropy solutions as the unique physical weak solution, using
entropy entropy-flux pairs.

* Here: We now revisit scalar conservation laws in 1D and apply the concept
of entropy solution in that context.



Example 1:
The transport equation with constant speed

u x<0

d.u +ad,u =0, u(x,0) = up(x) = {u x>0
r

has a weak solution u(x, t) = uy(x — at). We verify that this is an entropy solution.
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This weak solution is an entropy solution! ©



Example 2:
Conservation law with differentiable convex flux:

u x<0

dcu + f'(u) ,u = 0, u(x, 0) = up(x) = {ur x>0

Since f'(u) increases in u, the characteristics on the left or faster than the ones on the
right, and we have a shock wave with speed
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Example 2:
Burgers’ equation with shock wave:

u x<0

u, x>0 Uy > Ur

d;u + 2u d,u = 0, u(x,0) = uy(x) = {

We verify that u(x, t) = uy(x — st) is an entropy solution, with shock speed
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Example 3:
Conservation law with twice differentiable strictly convex flux:

uy x<0

ou+ f'(u)d,u=0, u(x,0) = up(x) = {ur r>0 W>w

Since f'(u) increases in u, the characteristics on the right are than the
ones on the left. We fill up the gap with characteristics that emerge from
the origin (not from the shocks). Along those characteristics:
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Note that f’ increases strictly monotonely from u_I to u,..
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Theory is done! .... For now




Let’s do a

summary



summary

* Conservation laws: d;u + d,.f(u) =0
* The integral of u is conserved

* Several layers of complexity:
e Scalar conservation laws (mostly understood)
e Systems in 1D (mostly understood, tbc.)
e Systems in higher dimensions still research area

* Important examples
* Transport equation
* Burgers’ equation
* Wave equation (system)

* The mathematical model is often the vanishing viscosity limit of a more
complex physical model.



summary

* Method of characteristics:
» Easiest way to find the solution

* Problem: discontinuities arise in finite time when characteristics cross
(shock wave) and the characteristics do not determine the solution
everywhere

* Weak solutions
* Broad enough notion of solutions.
* Implies Rankine-Hugoniot condition.

* Problem: there is no unique weak solution.



summary

* Entropy conditions (for scalar conservation laws in 1D)
* Intention is to detect unphysical weak solutions
* Lax entropy condition
* Liu entropy condition

* Weak entropy solutions are the correct notion of solution
» Definition via entropy-entropy flux pairs
* L1 contraction property
 Vanishing viscosity limits (if they exist) are entropy solutions
* General existence results
 Total variation

* Applications to scalar conservation laws in 1D
* Strictly convex flux as generalization of Burgers’ equation



What’s next?

* Finite Difference Schemes

 Finite Volume Schemes

e Systems of Conservation Laws

ENO Schemes

* Discontinuous Galerkin schemes



