
Numerical methods for conservation laws
4: Entropy conditions, Part 1



Recap

We have seen that weak solutions are natural for conservation laws.

However, there is no unique weak solution.

Consequently, we need criteria to single out the “correct” or “physical” 
weak solution.



So we have multiple weak solutions. How do we pick the one that's physical?

We want the characteristics to run into the shock curves, never to emerge 
from the shock curve.



If the flux is differentiable, then the conservation can be written

𝜕𝑡𝑢 + 𝑓′ 𝑢 ⋅ 𝜕𝑥𝑢 = 0

Along a shock curve with speed 𝑠, the characteristics shall run into the shock.
Hence
• Characteristics from the left must be at least as “fast” as the shock speed
• Characteristics from the right must at most as “slow” as the shock speed

Mathematically, this means that the Lax entropy condition holds

𝑓′ 𝑢𝑙 ≥ 𝑠 ≥ 𝑓′ 𝑢𝑟



“Slower” means smaller speed 𝑠, “faster” means higher speed 𝑠



1. Example: Transport equation with constant speed:

We have 𝑓′ 𝑢 = 𝑎, so any discontinuity must move with speed 𝑎

2. Example: Burgers’ equation

We have 𝑓’(𝑢) = 2𝑢, so we must have 𝑢𝑙 ≥ 𝑢𝑟





We can also identify “physical” solutions by the following argument, due to Liu. We 
start with discontinuous initial data:

Suppose we perturb the initial data by an intermediate state:



Intuitively, the small perturbation at the start should not amplify over time.

Otherwise, we cannot hope for any reasonable modeling or simulation.

This requires that the jump behind travels not slower than the jump ahead.

Using the Rankine-Hugoniot condition, this requirement reads:

Liu’s condition means that a shock is physically admissible if the states 𝑢𝑙 and 𝑢𝑟
satisfy the condition above, that is, the shock is stable under perturbations.



Requiring that the jump behind travels faster than the jump ahead, 
therefore means:
• If 𝑢𝑙 < 𝑢𝑟 , then 𝑓 stays above or on the secant line 
• If 𝑢𝑙 > 𝑢𝑟, then 𝑓 stays below or on the secant line



Equivalently, we can require that the speed of the original shock is not larger 
than the speed of the intermediate shock:



Numerical methods for conservation laws
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Towards Entropy solutions

The correct weak solutions are so-called entropy solutions. This theory 
is set up in several stages.

1. Entropy pairs

2. Weak entropy solutions

3. Vanishing viscosity limit

4. Contraction property

5. Existence

6. Additional properties



Entropy pairs
We say that two differentiable functions 

𝜂:ℝ → ℝ, Ψ:ℝ → ℝ

are an entropy-entropy flux pair (𝜂,Ψ) compatible with the flux 𝑓 if the 
entropy 𝜂 is convex and 

𝜂′ 𝑢 ⋅ 𝑓′ 𝑢 = Ψ′(𝑢)

We do not need to assume that 𝜂, Ψ, or 𝑓 are differentiable when this 
equation holds in the sense of distributions.

Note that entropy-entropy flux pairs always depend on the flux.



Examples

1) We take 𝜂 𝑢 = 𝑢 and Ψ = 𝑓

2) Given any convex differentiable function 𝜂, we may pick 

Ψ u = න
𝑧0

𝑢

𝜂′(𝑧) 𝑓′ 𝑧 𝑑𝑧

3) The Kruskov entropy-entropy flux pairs are 

𝜂 𝑢 = 𝑢 − 𝑘 , Ψ 𝑢 = sgn(𝑢 − 𝑘)( 𝑓 𝑢 − 𝑓 𝑘 )

These are important but not differentiable. But convex functions can be 
approximated by linear combinations of such entropy functions



Entropy solutions

Suppose that 𝑢 ∈ 𝐿1(ℝ × ℝ0
+) is a weak solution the conservation law 

with continuous flux 𝑓 and integrable initial data 𝑢0 ∈ 𝐿∞(ℝ) .

We call 𝑢 a weak entropy solution if for all entropy pairs 𝜂,Ψ

න
0

∞

න
ℝ

𝜂 𝑢 ⋅ 𝜙𝑡 +Ψ 𝑢 ⋅ 𝜙𝑥 𝑑𝑥 𝑑𝑡 + න
ℝ

𝜂 𝑢0 ⋅ 𝜙 𝑑𝑥 ≥ 0

for all non-negative test functions 𝜙.



Note: When a weak entropy solution 𝑢 is a classical solution, then the entropy 
𝜂(𝑢) is conserved: 



Note:
When 𝑢 is weak entropy solution, then definition of weak 
entropy solutions implies that entropy is non-increasing:

𝜕𝑡𝜂 𝑢 + 𝜕𝑥Ψ 𝑢 ≤ 0

(just another way of writing down the definition of weak 
entropy solutions, but in the sense of distributions)

This is why we call 𝜂 the entropy.



Vanishing Viscosity limit

Suppose we have smooth solutions 𝑢𝜖 𝑥, 𝑡 to the viscous equation 

𝜕𝑡𝑢𝜖 + 𝜕𝑥 𝑓 𝑢𝜖 = 𝜖Δ𝑢𝜖 , 𝑢𝜖 𝑥, 0 = 𝑢0 𝑥 .

Suppose that 𝑢𝜖 ∈ 𝐿∞ is uniformly bounded for 0 ≤ 𝜖 ≤ 1. 

If 𝑢𝜖 converges to 𝑢 ∈ 𝐿∞ almost everywhere, then the limit 𝑢 is a 
weak entropy solution.



Proof



Proof



Proof



Proof



Proof

This indicates the weak entropy solutions are the correct solutions, since 
many conservation laws arise via the vanishing viscosity simplification.

Establishing the almost everywhere convergence of 𝑢𝜖 towards 𝑢 is the 
major challenge in using the vanishing viscosity approach.



Contraction property

Suppose that 𝑢0, 𝑣0 ∈ 𝐿∞(ℝ) and 𝑢, 𝑣 ∈ 𝐿∞ ℝ × ℝ0
+ ∩ 𝐶(ℝ0

+, 𝐿1 ℝ )
are the respective weak entropy solutions to the conservation laws

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 𝑢 = 0, 𝑢 𝑥, 0 = 𝑢0 𝑥 ,

𝜕𝑡𝑣 + 𝜕𝑥 𝑓 𝑣 = 0, 𝑣 𝑥, 0 = 𝑣0 𝑥 .

Then 
𝜕𝑡 𝑢 𝑡 − 𝑣(𝑡) 𝐿1 ≤ 0

This implies uniqueness of weak entropy solution.

Kruzkov, 1970.



Contraction property
Suppose that 𝑢, 𝑣 ∈ 𝐿∞ ℝ × ℝ0

+ ∩ 𝐶(ℝ0
+, 𝐿1 ℝ ) are two respective weak entropy 

solutions to the conservation law

𝜕𝑡𝑢 + 𝜕𝑥 𝑓 𝑢 = 0, 𝑢 𝑥, 0 = 𝑢0 𝑥 ,

We want to show 𝑢 = 𝑣. Note that the initial conditions are the same. Recall that 

𝜕𝑡 𝑢 𝑡 − 𝑣(𝑡) 𝐿1 ≤ 0

While for 𝑡 = 0, we have
𝑢 0 − 𝑣(0) 𝐿1 = 𝑢0 − 𝑢0 𝐿1 = 0

Since 𝑢 𝑡 − 𝑣(𝑡) 𝐿1does not increase and is zero at 𝑡 = 0, it must remain zero.

In particular, 𝑢 𝑡 = 𝑣(𝑡) at all times 𝑡 ≥ 0.



Entropy solutions: Existence

Suppose that 𝑢0 ∈ 𝐿∞(𝑅) is a bounded measurable function, and that 
the flux is in 𝐶2.

Then the scalar conservation law has a unique weak entropy solution 𝑢,

𝑢 ∈ 𝐿∞ ℝ ×ℝ0
+ ∩ 𝐶(ℝ0

+, 𝐿𝑙𝑜𝑐
1 ℝ )

Kruzkov, 1970.



Entropy solutions: Variation and Monotonicity

Suppose that 𝑢0 ∈ 𝐿∞(ℝ) and that we have a weak entropy solution

𝑢 ∈ 𝐿∞ ℝ × ℝ0
+ ∩ 𝐶(ℝ0

+, 𝐿𝑙𝑜𝑐
1 ℝ )

• If 𝑢0 ∈ 𝐵𝑉(ℝ), then 𝑢 𝑡 ∈ 𝐵𝑉(ℝ). What’s 𝐵𝑉(ℝ)? Next slide

• If 𝑢0 is monotonely decreasing/increasing, then so is 𝑢.

Conway & Smoller, 1966.









Cantor function: a piecewise constant 
monotonely increasing function with 
countably many jumps and non-zero 
total variation.

Used for many counterexamples in 
real analysis



Main applications for conservation laws:

• The space 𝐵𝑉(ℝ) is large enough to contain piecewise smooth 
functions.

• For piecewise smooth functions, possibly with jumps, we can easily 
compute the total variation.

• The variation of a solution does not blow up in finite time. For 
example, the sum of jumps does not explode.
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”The basic questions regarding […] entropy solutions for general systems are still
open. Instead, the present trend seems to concentrate on special systems with
additional properties which enable to answer the questions of existence, stability,
large time behavior, etc.”



Summary

• Classical solutions to restrictive for applications

• Weak solutions are good but too broad 

• Entropy solutions are the weak solutions that are “physical”

• Definition via entropy-entropy flux pairs

• The limits of vanishing viscosity are entropy solutions

• L1 contraction property of entropy solutions
• -> uniqueness!

• Existence

• Bounded variation


