Numerical methods for conservation laws
4: Entropy conditions, Part 1




Recap

We have seen that weak solutions are natural for conservation laws.
However, there is no unique weak solution.

Consequently, we need criteria to single out the “correct” or “physical”
weak solution.



So we have multiple weak solutions. How do we pick the one that's physical?

We want the characteristics to run into the shock curves, never to emerge
from the shock curve.
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If the flux is differentiable, then the conservation can be written
ou+ f'(u)-d,u=20
Along a shock curve with speed s, the characteristics shall run into the shock.

Hence

* Characteristics from the left must be at least as “fast” as the shock speed
e Characteristics from the right must at most as “slow” as the shock speed

Mathematically, this means that the Lax entropy condition holds

ffw) =2 s = f'(uy)



“Slower” means smaller speed s, “faster” means higher speed s
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1. Example: Transport equation with constant speed:

We have f'(u) = a, so any discontinuity must move with speed a

2. Example: Burgers’ equation

We have f'(u) = 2u, so we must have u; = u,
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We can also identify “physical” solutions by the following argument, due to Liu. We
start with discontinuous initial data:
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Intuitively, the small perturbation at the start should not amplify over time.

This requires that the jump behind travels not slower than the jump ahead.

Using the Rankine-Hugoniot condition, this requirement reads:
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Liu’s condition means that a shock is physically admissible if the states u; and u,
satisfy the condition above, that is, the shock is stable under perturbations.



Requiring that the jump behind travels faster than the jump ahead,
therefore means:
If u; < u, , then f stays above or on the secant line
If u; > u,, then f stays below or on the secant line
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Euivalently, we can require that the speed of the original shock is not Iargerj
than the speed of the intermediate shock:
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Numerical methods for conservation laws
4: Entropy conditions, Part 2




Towards Entropy solutions

The correct weak solutions are so-called entropy solutions. This theory
is set up in several stages.

Entropy pairs

Weak entropy solutions
Vanishing viscosity limit
Contraction property
Existence

A o

Additional properties



Entropy pairs

We say that two differentiable functions

n:R - R, Y:R->R

are an entropy-entropy flux pair (n, %) compatible with the flux f if the
entropy n is convex and

n'(w) - f'(w) =¥

We do not need to assume that n, ¥, or f are differentiable when this
equation holds in the sense of distributions.

Note that entropy-entropy flux pairs always depend on the flux.



Examples
1) We taken(u) =uand¥ = f

2) Given any convex differentiable function 17, we may pick

W) = f ') f'(@)dz

A

3) The Kruskov entropy-entropy flux pairs are
n(uw) = u— ki, Y(u) =sgn(u —k)(f(w) - f(k))

These are important but not differentiable. But convex functions can be
approximated by linear combinations of such entropy functions



Entropy solutions

Suppose that u € L1 (R x RY) is a weak solution the conservation law
with continuous flux f and integrable initial data uy € L (R) .

We call u a weak entropy solution if for all entropy pairs (1, ¥)

foof n(u)-¢t+w<u>-¢xdxdt+fn(uo>-¢dxzo
0 R R

for all non-negative test functions ¢.



Note: When a weak entropy solution u is a classical solution, then the entropy
n(u) is conserved:
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Note:

When u is weak entropy solution, then definition of weak
entropy solutions implies that entropy is non-increasing:

d,n(u) + 0, P(u) <0

(just another way of writing down the definition of weak
entropy solutions, but in the sense of distributions)

This is why we call n the entropy.



Vanishing Viscosity limit
Suppose we have smooth solutions u.(x, t) to the viscous equation

do;u. + 0, f(u.) = eAu, u(x,0) = uy(x).
Suppose that u, € L™ is uniformly bounded for 0 < e < 1.

If u. converges to u € L™ almost everywhere, then the limit u is a
weak entropy solution.
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This indicates the weak entropy solutions are the correct solutions, since
many conservation laws arise via the vanishing viscosity simplification.

Establishing the almost everywhere convergence of u, towards u is the
major challenge in using the vanishing viscosity approach.



Contraction property

Suppose that uy, vy € L”(R) and u, v € L°(R x R}) n C(RE, L' (R))
are the respective weak entropy solutions to the conservation laws

diu + 0, f(u) =0, u(x,0) = ugy(x),
;v +0, f(v) =0, v(x,0) = vy(x).

Then
d¢llu(t) —v(®)|l;» <0

This implies uniqueness of weak entropy solution.
Kruzkov, 1970.



Contraction property

Suppose that u, v € L°(R X R}) n C(RY, L' (R)) are two respective weak entropy
solutions to the conservation law

d;u+ 0, f(u) =0, u(x,0) = uy(x),
We want to show u = v. Note that the initial conditions are the same. Recall that

Oellu(®) = vl <0

While for t = 0, we have
1u(0) — v(0)ll;2 = llug — upll;2 =0

Since ||[u(t) — v(t)||,1does not increase and is zero at t = 0, it must remain zero.
In particular, u(t) = v(t) atall timest > 0.



Entropy solutions: Existence

Suppose that uy € L*(R) is a bounded measurable function, and that
the flux is in C2.

Then the scalar conservation law has a unique weak entropy solution u,

u € L°(Rx R{) N C(RE, L7, .(R))

Kruzkov, 1970.



Entropy solutions: Variation and Monotonicity

Suppose that uy € L (R) and that we have a weak entropy solution

u € L°(Rx R NnC(RE, LT .(R))

loc

 If uy € BV(R), then u(t) € BV(R). What’s BV (IR)? Next slide
* If uy is monotonely decreasing/increasing, then so is u.

Conway & Smoller, 1966.
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Main applications for conservation laws:

* The space BV (R) is large enough to contain piecewise smooth
functions.

* For piecewise smooth functions, possibly with jumps, we can easily
compute the total variation.

 The variation of a solution does not blow up in finite time. For
example, the sum of jumps does not explode.
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Hardcore analysis. Systems in higher dimensions seem to absent in the literature.



Literature

D. Serre, L. Silvestre. Multi-dimensional Burgers Equation with unbounded initial
data: well-posedness and Dispersive Estimates

A. Bressan. Hyperbolic conservation laws: an illustrated Tutorial
L.C. Evans. Partial Differential Equations.

E. Tadmor. Approximate Solutions to nonlinear conservation laws and related
equations.

“"The basic questions regarding [...] entropy solutions for general systems are still
open. Instead, the present trend seems to concentrate on special systems with
additional properties which enable to answer the questions of existence, stability,
large time behavior, etc.”



summary

* Classical solutions to restrictive for applications
* Weak solutions are good but too broad
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* Entropy solutions are the weak solutions that are “physica

* Definition via entropy-entropy flux pairs
* The limits of vanishing viscosity are entropy solutions

* L1 contraction property of entropy solutions
* ->uniqueness!

e Existence
 Bounded variation



