Numerical methods for conservation laws
3: Weak solutions and RH condition




Consider the conservation law
diu+ 0, f =0, u(x,0) = uy(x)

We multiply that with a test function ¢, thatis, a smooth function with compact supportin
R X R{, and then we take integrals:

J J diu(x,t) - dp(x,t) + 0, f(u,x,t) - p(x,t)dxdt =0
0 — 00
Both equations are equivalent for a smooth solution u. Now we integrate by parts
J j u(x,t) - 0:p(x, t) + f(u,x,t) - 0,¢(x,t) dxdt = —J ug(x) - d(x,0) dx
0 — 00 —00

This is the weak formulation of the initial value problem. If any locally integrable function u
satisfies the weak formulation for all test functions ¢, then we call it a weak solution.



Recall a test function (in this context) is a function

¢:R xR >R

* such that ¢ has infinitely many derivatives in x and t, and

* the support of ¢ is compact. Here, the support is the set

supp(¢p) = { (x,t) ER X Ry : ¢(x,t) # 0}
t/\




Rankine-Hugoniot condition
We study the behavior of weak solutions that are (dis)continuous along (shock) curves.

Suppose that x = s(t) is a line parameterized in the time variable.
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Consider a small domain w that covers a part of the curve.
It splits into two pieces w; and w,, to the left and right of the curve, resp.
Suppose that u(x, t) is a weak solution to a scalar conservation law with

differentiable flux, taking differentiable values u;(x, t) and u,.(x, t) to both
sides of the curve.




For any test function ¢ supported within the small domain w, we observe
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Only the boundary integrals remain:

0= (=$-u + fw))pds+ ($-ur — fuy)) ¢ ds

dwy 0wy
We conclude that this identity holds pointwise. We get
$-(u—up) = f(w) — f(u)
This is the Rankine-Hugoniot condition.

Main application: when s(t) describes the trajectory of a shock curve,
that is, a discontinuity of u.



Remember the transport equation
diu +ad,u= 0

The initial values are piecewise constant with
a discontinuity.

2 X%X<606
Uy (x) =
| x>0
S" . Que —avy,

\

2




Burgers’ equation

Example

Consider Burgers' equation with periodic BC

over [0,1] and with smooth initial data
Uy(x) = sin( 2 mx )

For the shock curve x(t) = 0.5 we get

S'(ul_ur):f(ul)_f(ur)zo

We conclude that the RH condition is satisfied.




As an instructive example we consider, again,
Burgers' equation.

dou + 0,(u?) =0

The initial values are piecewise constant with
a discontinuity.

2 X%X<6

\ X >0

The characteristics crash into each other.
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Once more, Burgers' equation
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with discontinuous piecewise constant initial values.
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There are infinitely many weak solutions to this problem.
That is typical for conservation laws.



So we have multiple weak solutions. How do we
pick the one that’s “physical”?

We want the characteristics to run into the shock,

that is, no characteristics emerge from the shock
wave.

Next time: Entropy conditions!



