Numerical methods for conservation laws
1: Introduction
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For the purpose of this class, a conservation law is a partial differential
equation (PDE) of the form

o,u+div f(u,x,t) =0
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dVergence in x
This is a first-order evolution problem.

Generally speaking, this class studies:

*Existence & Uniqueness (weak solutions, entry conditions)
*Qualitative properties (shock waves, physics background)
Numerical methods (Finite Diff., Finite Volume, DG methods, ... )



General remarks

Evolution problem, i.e., time-dependent. Hence we need initial dataatt = 0
We know initial data and the flux. We want to know u = u(x, t)
More generally, the flux may be dependent on the time:

fw = f(uxt)
The unknown u can be a scalar (scalar conservation law) or may have multiple
components (system of conservation laws)

In practice, we look at a spatial domain () € R? and some time interval [0, T'].



Example: scalar conservation law in 1D

We consider a quantity over a spatial interval
Let u(x, t) be the density of a substance at point x and time t

The total amount over the subinterval [xq, x5 ] is

M(t) = fxzu(x, t) dx

Let a(x, t) denote the velocity of the substance at (x, t), then physics gives us

d; szu(x, t)dx = a(xq, t)ulxy, t) —alx,, )ulx,, t) = — fxzax(a(x, tu(x,t)) dx



Example: scalar conservation law in 1D

Consequently,

szatu(x, t)dx = — szax(a(x, u(x,t)) dx
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This identity is valid at any time t and over any subinterval [x4, x,].
Therefore we deduce the conservation law

diu(x,t) = —0d,(alx, t)u(x,t))

This is a conservation law. What is the flux? ‘P(U X, f)
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Example: wave equation in 1D
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Example: wave equation in 1D

Recall the wave equation in 1D, without
external forces:

attE — )/axxE —_ O

We introduce auxiliary variables for the
first derivatives of E, say,

v = 0:E, s = 0,E
These satisfy the equations

d¢s — 0, v =0
;v —y0d,,s =0



Why “Conservation Law”?

Let w € R? be a small domain and let u(x, t) describe the density of some
qguantity distributed in space. Then we consider

j u(x, t)dx

w

How does this amount change over time?
atf u(x,t) dx =7
w

Often, there is a flux field f (u, x, t) that describes the flux of the quantity at any
given position and time.



Why “Conservation Law”?

Physical intuition: the negative divergence of the flux describes how much of the
guantity is created or lost.

atju(x,t) dx = J oulx, t) dx = —%f(u,s,t) -nds = —f div f(u,x,t) dx
This relates to the balance equation
atf u(x, t) dx = —jg f(u,s,t)-nds
w w

In practice, such balance equations lead to the conservation law PDE.






Flux in more detail

If u is a scalar function,
u:RYXR >R
X f
Then the flux must be
f:RxRYXR— R
U X t

The flux f takes values in a vector
field, and we take the divergence.

If u has multiple (say, m) components,
u:R*xXR—>R™
¥ ¢
Then the flux must be
f:R™xRYXR—> R™
U > ¢

The flux takes values in matrices of size
m X d. We take the divergence of this
matrix rowwise.






