
Numerical methods for conservation laws
1: Introduction



Lecturer: Martin Licht, martin.licht@epfl.ch

Lecture: Wednesday, 13:15-15:00 

Tutor: Fernando Henriquez
Exercises: Friday, 15:15-17:00

Textbook: Jan S. Hesthaven, Numerical Methods for Conservation Laws

Exercises: Published on Moodle no later than Thursday after the lecture

Slides will be on Moodle before the lecture (except this one).

Lecture videos are published (more or less) frequently on Youtube.



For the purpose of this class, a conservation law is a partial differential 
equation (PDE) of the form

𝜕𝑡𝑢 + 𝑑𝑖𝑣 𝑓 𝑢, 𝑥, 𝑡 = 0

This is a first-order evolution problem.

Generally speaking, this class studies:
•Existence & Uniqueness (weak solutions, entry conditions)
•Qualitative properties (shock waves, physics background)
•Numerical methods (Finite Diff., Finite Volume, DG methods, … )



▪ Evolution problem, i.e., time-dependent. Hence we need initial data at 𝑡 = 0

▪ We know initial data and the flux. We want to know 𝑢 = 𝑢(𝑥, 𝑡)

▪ More generally, the flux may be dependent on the time:

𝑓 𝑢 = 𝑓(𝑢, 𝑥, 𝑡)

▪ The unknown 𝑢 can be a scalar (scalar conservation law) or may have multiple 

components (system of conservation laws)

▪ In practice, we look at a spatial domain Ω ⊆ 𝑅𝑑 and some time interval [0, 𝑇].

General remarks



We consider a quantity over a spatial interval

Let 𝑢 𝑥, 𝑡 be the density of a substance at point x and time t

The total amount over the subinterval 𝑥1, 𝑥2 is 

𝑀 𝑡 = න
𝑥1

𝑥2

𝑢(𝑥, 𝑡) 𝑑𝑥

Let 𝑎 𝑥, 𝑡 denote the velocity of the substance at 𝑥, 𝑡 , then physics gives us

𝜕𝑡න
𝑥1

𝑥2

𝑢(𝑥, 𝑡) 𝑑𝑥 = 𝑎 𝑥1, 𝑡 𝑢 𝑥1, 𝑡 − 𝑎 𝑥2, 𝑡 𝑢 𝑥2, 𝑡 = −න
𝑥1

𝑥2

𝜕𝑥(𝑎 𝑥, 𝑡 𝑢 𝑥, 𝑡 ) 𝑑𝑥

Example: scalar conservation law in 1D



This identity is valid at any time 𝑡 and over any subinterval 𝑥1, 𝑥2 .
Therefore we deduce the conservation law

𝜕𝑡𝑢(𝑥, 𝑡) = −𝜕𝑥(𝑎 𝑥, 𝑡 𝑢 𝑥, 𝑡 )

This is a conservation law. What is the flux?

Consequently, 

න
𝑥1

𝑥2

𝜕𝑡𝑢(𝑥, 𝑡) 𝑑𝑥 = −න
𝑥1

𝑥2

𝜕𝑥(𝑎 𝑥, 𝑡 𝑢 𝑥, 𝑡 ) 𝑑𝑥

Example: scalar conservation law in 1D



Example: wave equation in 1D



Recall the wave equation in 1D, without 
external forces:

𝜕𝑡𝑡𝐸 − 𝛾𝜕𝑥𝑥𝐸 = 0

We introduce auxiliary variables for the 
first derivatives of E, say, 

𝑣 = 𝜕𝑡𝐸, 𝑠 = 𝜕𝑥𝐸

These satisfy the equations 
𝜕𝑡𝑠 − 𝜕𝑥𝑣 = 0
𝜕𝑡𝑣 − 𝛾𝜕𝑥𝑠 = 0

Example: wave equation in 1D



Why “Conservation Law”?

Let 𝜔 ⊆ 𝑅𝑑 be a small domain and let 𝑢(𝑥, 𝑡) describe the density of some 
quantity distributed in space. Then we consider

න
𝜔

𝑢 𝑥, 𝑡 𝑑𝑥

How does this amount change over time?

𝜕𝑡න
𝜔

𝑢(𝑥, 𝑡) 𝑑𝑥 = ?

Often, there is a flux field 𝑓 𝑢, 𝑥, 𝑡 that describes the flux of the quantity at any 
given position and time. 



Physical intuition: the negative divergence of the flux describes how much of the 
quantity is created or lost.

𝜕𝑡න
𝜔

𝑢(𝑥, 𝑡) 𝑑𝑥 = න
𝜔

𝜕𝑡𝑢 𝑥, 𝑡 𝑑𝑥 = −ර
𝜔

𝑓 𝑢, 𝑠, 𝑡 ⋅ 𝑛 𝑑𝑠 = −න
𝜔

𝑑𝑖𝑣 𝑓 𝑢, 𝑥, 𝑡 𝑑𝑥

This relates to the balance equation 

𝜕𝑡න
𝜔

𝑢(𝑥, 𝑡) 𝑑𝑥 = −ර
𝜔

𝑓 𝑢, 𝑠, 𝑡 ⋅ 𝑛 𝑑𝑠

In practice, such balance equations lead to the conservation law PDE.

Why “Conservation Law”?





If 𝑢 is a scalar function,

𝑢 ∶ 𝑅𝑑 × 𝑅 → 𝑅

Then the flux must be 

𝑓 ∶ 𝑅 × 𝑅𝑑 × 𝑅 → 𝑅𝑑

The flux 𝑓 takes values in a vector 
field, and we take the divergence.

If 𝑢 has multiple (say, 𝑚) components,

𝑢 ∶ 𝑅𝑑 × 𝑅 → 𝑅𝑚

Then the flux must be 

𝑓 ∶ 𝑅𝑚 × 𝑅𝑑 × 𝑅 → 𝑅𝑚×𝑑

The flux takes values in matrices of size 
𝑚 × 𝑑. We take the divergence of this 
matrix rowwise.

Flux in more detail




