
Numerical methods for conservation laws
17: Discontinuous Galerkin methods



Recall

• We have discussed (weighted) essentially non-oscillatory schemes, which 
can be seen as an adaptive generalization of linear higher-order schemes. 
Their behavior is very nonlinear and they use a cartesian mesh.

• We now discuss another approach to numerical methods for conservation 
laws: discontinuous Galerkin methods. (DG methods)

• DG methods share ideas with finite element methods

• Remark: as we have seen, in many simple cases, the differences between 
the different methods (FD,FV,DG) are only notational.



Recap: Continuous Galerkin methods (finite element mini-recap)

The model problem for Galerkin methods in numerical PDE is the Poisson 
problem with homogeneous Dirichlet boundary conditions:

−𝑢′′ 𝑥 = 𝑔 𝑥 , 𝑥 ∈ (0,1)
𝑢 0 = 0, 𝑢 1 = 0.

How to develop numerical methods for those? First reformulate the problem.

Note that 𝑢 is a solution only if for all test function 𝜙 ∈ 𝐶𝑐
∞(0,1)



We integrate by parts: 𝑢 is a solution only if for all test function 𝜙 ∈ 𝐶𝑐
∞(0,1)

the weak formulation holds:

We let 𝐻0
1 0,1 be the space of square-integrable functions whose weak 

derivative is square-integrable and satisfies 𝑢 0 = 𝑢 1 = 0 at the 
boundary.

Weak formulation: suppose that 𝑔 ∈ 𝐿2 0,1 . We seek 𝑢 ∈ 𝐻0
1 0,1 such 

that for all 𝜙 ∈ 𝐻0
1 0,1 we have (∗) satisfied.



Theorem: 

Suppose that 𝑔 ∈ 𝐿2 0,1 . There exists 𝑢 ∈ 𝐻0
1 0,1 satisfying the weak 

formulation.

Weak formulations work well for the theoretical understanding of partial 
differential equations. How can we use them to develop numerical 
methods?

Idea: 𝑢 is sought within a trial space (here, 𝐻0
1 0,1 ) and then tested 

against functions from a test space (again, 𝐻0
1 0,1 ).

What if use the weak formulation but the trial and test spaces are 
subspaces?



Consider some subspaces of 𝐻0
1 0,1 :

• The space of degree 𝑚 polynomials, 𝑃𝑚 0,1 satisfying the boundary 
conditions. 

• The span of the first 𝑚 sine modes: sin(2 𝜋 𝑘 𝑥 ), 1 ≤ 𝑘 ≤ 𝑚

• The space of continuous piecewise linear functions with respect to 
some partition of the interval and satisfying the boundary conditions.



The last example is the most important one: it is the Lagrange space and leads to the 
finite element method.

Their spatial derivative is piecewise constant

Obviously, these functions constitute a finite-dimensional subspace of 𝐻0
1 0,1



A basis of the Lagrange space is given by the hat 
functions Φ𝑖 corresponding to the inner nodes.

We can write every 𝑣ℎ ∈ 𝑉ℎ as a linear combination of 
those hat functions.



Suppose we have fixed a subspace 𝑉ℎ ⊆ 𝐻0
1 0,1 .

Galerkin formulation: we seek 𝑢ℎ ∈ 𝑉ℎ such that for all 𝜙ℎ ∈ 𝑉ℎ :

Theorem: 

Suppose that 𝑓 ∈ 𝐿2 0,1 . There exists 𝑢ℎ ∈ 𝑉ℎ satisfying the Galerkin 
formulation.



What about finite element methods for conservation laws? Consider the 
viscous problem

𝜕𝑡𝑢 + 𝜕𝑥𝐹 𝑢 = 𝜖𝜕𝑥𝑥
2 𝑢

over the interval (0,1) and with homogeneous boundary conditions.

A weak formulation reads: for all 𝜙 ∈ 𝐶𝑐
∞(0,1)

• We can set up the weak formulation with trial and test space 𝐻0
1 0,1

• Similarly, we can set up the Galerkin formulation, say, using the Lagrange 
space.



Galerkin formulation: find 𝑢ℎ ∈ 𝑉ℎ such that for all 𝜙ℎ ∈ 𝑉ℎ

• It suffices to only test against the hat functions Φ𝑖 since those are a 
basis of the trial space

• We can express the solution in terms of the test functions

𝑢 𝑥, 𝑡 =෍

𝑖

𝑣𝑖 𝑡 Φℎ(𝑥)

• In combination with some time stepping scheme, we only need to 
solve a finite (nonlinear) system in finitely many unknowns.



As the viscous regularization 𝜖 goes to zero, the original conservation law emerges.

However, there are issues with using the Galerkin formulation:

• The integrals against 𝐹 𝑢ℎ can only be computed approximately for nonlinear 
flux 𝐹 (using quadrature).

• For vanishing viscosity, the solution may develop steep gradients. That happens 
even in the linear case 𝐹 𝑢 = 𝑐𝑢. These boundary layers are difficult to 
approximate unless the mesh size gets very small.



When the solution of conservation laws develops steep gradients and jumps, then 
continuous Galerkin methods will struggle to approximate the solution. 

However, Galerkin methods are well-understood from a theoretical point of view 
and are easily adapted to different geometries.

Can we leverage those advantages?



The finite element method emerges when using piecewise polynomial 
continuous functions in the trial and test spaces. It is a special example 
of a Galerkin method.

In a discontinuous Galerkin method, we use discontinuous piecewise 
polynomials for the trial and test spaces. Of course, that requires some 
tweaking to make sure the method works well…

The same idea is used for conservation laws! We use a discontinuous 
trial and test space, and tweak the formulation.



Step 1) We discretize the domain Ω into 𝑁 non-overlapping cells:

Ω = 𝑗=1ڂ
𝑁 𝐷𝑗.

Step 2) Over each cell 𝐷𝑗 we fix a basis Φ𝑗
𝑖

𝑖=0

𝑚
of the vector space 

𝑉ℎ
𝑗
= 𝑃𝑚(𝐷𝑗), functions that are degree 𝑚 polynomials over 𝐷𝑗 and 

vanish outside of 𝐷𝑗.



Step 3) We define the space of functions that are piecewise polynomial 
over the mesh. 

Vh =⊕𝑗=1
𝑁 𝑉ℎ

𝑗

This is also known as the space of broken polynomials. These functions 
may be discontinuous across cell boundaries. 



Step 4) We define the global solution as the sum of cellwise global 
solutions:

The basis functions depend only on position 𝑥, their coefficients 
depend only on time 𝑡



Step 5) We define the method by a Galerkin formulation. On each cell 𝐷𝑗 :

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
𝑣ℎ + 𝑑𝑖𝑣 𝐹 𝑈ℎ

𝑗
𝑣ℎ 𝑑𝑥 = 0, 𝑣ℎ ∈ 𝑉ℎ

𝑗

Using the basis, we use

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 + 𝑑𝑖𝑣 𝐹 𝑈ℎ

𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 = 0, 0 ≤ 𝑖 ≤ 𝑚

We perform integration by parts in space:

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 − 𝐹 𝑈ℎ

𝑗
∇Φ𝑗

𝑖 𝑥 𝑑𝑥 = −ර
𝐷𝑗

Φ𝑗
𝑖 𝑥 𝐹 𝑈ℎ

𝑗
⋅ 𝑛 𝑑𝑠 , 0 ≤ 𝑖 ≤ 𝑚



The problems on each cell are uncoupled.

We need to couple them between cells. 

Baisc idea:

we replace the fluxes at the boundary integral on the right-hand side by a 
numerical flux. At each cell interface we will incorporate data from the 
neighboring cells. 

A local conservation of mass holds on every cell.  Taking a constant test 
function, we find



For simplicity we consider a one-dimensional setting:
𝐷𝑗 = [𝑥𝑗−1/2 , 𝑥𝑗+1/2]

The formulation reads:

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 − න

𝐷𝑗

𝐹 𝑈ℎ
𝑗
∇Φ𝑗

𝑖 𝑥 𝑑𝑥 = − ቚΦ𝑗
𝑖 ⋅ 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

We introduce a numerical flux 𝐹∗, incorporating data from neighboring cells and thus 
providing the desired coupling:

ቚΦ𝑗
𝑖 ⋅ 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2
= ቚΦ𝑗

𝑖 ⋅ 𝐹∗
𝑥𝑗−1/2

𝑥𝑗+1/2

This is called the weak formulation of the DG method.

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 −න

𝐷𝑗

𝐹 𝑈ℎ
𝑗
∇Φ𝑗

𝑖 𝑥 𝑑𝑥 = − ቚΦ𝑗
𝑖 ⋅ 𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2



We integrate the left-hand side in space again.

We also have the strong formulation of the DG method:

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 + න

𝐷𝑗

𝑑𝑖𝑣 𝐹 𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 = − ቤΦ𝑗

𝑖 ⋅ 𝐹∗ − 𝐹 𝑈ℎ
𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

Both formulations are equivalent, and each has benefits in the 
theoretical analysis.



We define a few matrices that will be important in the discussion

𝑀𝑘𝑙
𝑗
= න

𝐷𝑗

Φ𝑗
𝑘 𝑥 Φ𝑗

𝑙 𝑥 𝑑𝑥 , 𝑆𝑘𝑙
𝑗
= න

𝐷𝑗

Φ𝑗
𝑘 𝑥 𝜕𝑥Φ𝑗

𝑙 𝑥 𝑑𝑥

We approximate 𝐹 𝑈ℎ
𝑗

by its (approximate) projection onto the local space over 𝐷𝑗

which is uniquely defined by requiring for all 0 ≤ 𝑝 ≤ 𝑚:



With those matrices we can rewrite the local weak formulation in terms of coefficients. 

𝑀𝑗𝜕𝑡𝑈
𝑗 − 𝑆𝑗

𝑡
𝐹𝑗 = − ቚΦ

𝑗
⋅ 𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2

where we use the vectors

𝑈
𝑗
= 𝑈𝑗

0, 𝑈𝑗
1, ⋯ , 𝑈𝑗

𝑚 𝑡
, 𝐹

𝑗
= 𝐹𝑗

0, 𝐹𝑗
1, ⋯ , 𝐹𝑗

𝑚 𝑡
,

Φ
𝑗
= Φ𝑗

0, Φ𝑗
1, ⋯ ,Φ𝑗

𝑚 𝑡
𝑎𝑡 𝑥𝑗±1/2

Similarly, the strong formulation can be expressed locally as:

𝑀𝑗𝜕𝑡𝑈
𝑗 + 𝑆𝑗𝐹𝑗 = − ቚΦ

𝑗
⋅ (𝐹∗ − 𝐹)

𝑥𝑗−1/2

𝑥𝑗+1/2



Example (Lax-Friedrichs flux)

𝐹∗ 𝑈−, 𝑈+ =
𝐹∗ 𝑈− − 𝐹∗ 𝑈+

2
−
𝛼

2
𝑛 𝑈+ − 𝑈−

In the case of the 1D transport equation with speed c

𝐹∗ 𝑈−, 𝑈+ = 𝑐
𝑈− − 𝑈+

2
−
𝛼

2
𝑛 𝑈+ − 𝑈−



We now address some theoretical properties.

Consider the weak formulation

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 − න

𝐷𝑗

𝐹 𝑈ℎ
𝑗
∇Φ𝑗

𝑖 𝑥 𝑑𝑥 = − ቚΦ𝑗
𝑖 ⋅ 𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2

Suppose that Ψ(𝑥, 𝑡) is a smooth test function and consider its 𝐿2 projection 
Ψℎ(𝑥, 𝑡) onto the global space 𝑉ℎ of broken piecewise polynomials

Here, the local 𝐿2 projection is defined via 

න
𝐷𝑗

Ψℎ
𝑗
𝑥, 𝑡 Φ𝑗

𝑖 𝑥 𝑑𝑥 = න
𝐷𝑗

ΨΦ𝑗
𝑖 𝑥 𝑑𝑥



Consider its coefficient vector in the 𝑗-th cell:

Ψ
𝑗
= Ψ𝑗

0, Ψ𝑗
1, ⋯ ,Ψ𝑗

𝑚 𝑡

We multiply the weak formulation by the test function

Ψ
𝑗
𝑀𝑗𝜕𝑡𝑈

𝑗 −Ψ
𝑗
𝑆𝑗

𝑡
𝐹𝑗 = − ቚΨ

𝑗
⋅ 𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2

න
𝐷𝑗

Ψℎ
𝑗
𝑥 ⋅ 𝜕𝑡𝑈ℎ

𝑗
𝑥 𝑑𝑥 , න

𝐷𝑗

𝜕𝑥Ψℎ
𝑗
𝑥 ⋅ 𝐹ℎ

𝑗
𝑥 𝑑𝑥



Observation 1: connection to finite volume methods

Assume that the test functionΨ = 1/ℎ is constant. Then so is Ψℎ = 1/ℎ.

When we use that test function in the weak form, then this simplifies to the local conservation of mass:

1

ℎ
𝜕𝑡න

𝐷𝑗

𝑈ℎ
𝑗
𝑑𝑥 = −

1

ℎ
𝐹𝑗+1/2
∗ − 𝐹𝑗−1/2

∗

We thus recover the basic form of a finite volume scheme. Summing up leads to 

𝜕𝑡෍

𝑗=1

𝑁

ഥ𝑈ℎ
𝑗
= −

1

ℎ
෍

𝑗=1

𝑁

𝐹𝑗+1/2
∗ − 𝐹𝑗−1/2

∗ = 𝐹𝑁+1/2
∗ − 𝐹0−1/2

∗

From the local conservation of mass we get global conservation of mass.

Typically, the boundary fluxes are the same (periodic BC) or they are part of the problem data.



Observation 2: the limit of discrete solutions is a weak solution

Let us assume that Ψ is compactly supported on Ω and vanishes for large 𝑡 > 0.

We integrate over the time interval and integrate by parts in time. Over each cell 
this leads to 

−න
0

𝑇

න
𝐷𝑗

𝑈ℎ
𝑗
𝜕𝑡Ψℎ

𝑗
+ 𝐹ℎ

𝑗
∇Ψℎ

𝑗
𝑑𝑥 𝑑𝑡 + න

𝐷𝑗

Ψℎ
𝑗
𝑥, 0 𝑈ℎ

𝑗
𝑥, 0 𝑑𝑥 = −න

0

𝑇

ቚΨℎ
𝑗
𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2
𝑑𝑡

We study the right-hand side. As ℎ goes to zero, we have in all relevant metrics 

Ψℎ →Ψ
But then we have (because of the conservation property) 



We observe

= −න
0

𝑇

න
Ω

𝑈ℎ 𝜕𝑡Ψℎ + 𝐹ℎ ∇Ψℎ 𝑑𝑥 𝑑𝑡 + න
Ω

Ψℎ 𝑥, 0 𝑈ℎ 𝑥, 0 𝑑𝑥

Where the gradient ∇Ψℎ is to be understood piecewise. 

If 𝑈ℎ converges to some function 𝑈 and 𝐹 𝑈ℎ converges 𝐹(𝑈) , then in the limit we get

−න
0

𝑇

න
Ω

𝑈 𝜕𝑡Ψ + 𝐹 𝑈 ∇Ψ 𝑑𝑥 𝑑𝑡 + න
Ω

Ψ 𝑥, 0 𝑈 𝑥, 0 𝑑𝑥 = 0

This is the weak form of the conservation law. 

That is, if the limit 𝑈 exists, then it is a weak solution of the conservation law.



Observation 3: there is an energy preservation principle

(this takes some effort)

Consider the strong formulation:

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 +න

𝐷𝑗

𝑑𝑖𝑣 𝐹 𝑈ℎ
𝑗
Φ𝑗
𝑖 𝑥 𝑑𝑥 = − ቤΦ𝑗

𝑖 ⋅ 𝐹∗ − 𝐹 𝑈ℎ
𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

We test this formulation with the solution 𝑈ℎ itself. Thus

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
𝑈ℎ
𝑗
𝑥 𝑑𝑥 + න

𝐷𝑗

𝑑𝑖𝑣 𝐹 𝑈ℎ
𝑗
𝑈ℎ
𝑗
𝑥 𝑑𝑥 = − ቤ𝑈ℎ

𝑗
⋅ 𝐹∗ − 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

We test this formulation with the solution 𝑈ℎ itself. Thus

1

2
𝜕𝑡 𝑈ℎ 𝐿2 𝐷𝑗

2 +න
𝐷𝑗

𝑑𝑖𝑣 𝐹 𝑈ℎ
𝑗
𝑈ℎ
𝑗
𝑥 𝑑𝑥 = − ቤ𝑈ℎ

𝑗
⋅ 𝐹∗ − 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2



Can we control the energy term 𝑈ℎ 𝐿2 𝐷𝑗

2 over time?

For simplicity, we assume 

𝐹 𝑈ℎ
𝑗
𝑥, 𝑡 = 𝐹ℎ

𝑗
𝑥, 𝑡 ,

that is, the approximation of the flux is the flux of the approximation. For example, that is true if the flux 
itself is a polynomial, such as in Burgers’ equation.

Otherwise, if that identity is not true, the difference will need to be estimated too.

With that assumption, and working in 1D, we arrive at 

න
𝐷𝑗

𝑈ℎ
𝑗
⋅ 𝐷𝐹ℎ

𝑗
𝑑𝑥 = න

𝐷𝑗

𝑈ℎ
𝑗
⋅ 𝐷𝐹 𝑈ℎ

𝑗
𝐷𝑈ℎ

𝑗
𝑑𝑥

Suppose that ෨𝐹 is a function with derivative D ෨𝐹 𝑈ℎ
𝑗

= 𝐷𝐹 𝑈ℎ
𝑗
𝑈ℎ
𝑗
. Thus, with the chain rule

න
𝐷𝑗

𝑈ℎ
𝑗
⋅ 𝐷𝐹ℎ

𝑗
𝑑𝑥 = න

𝐷𝑗

D ෨𝐹 𝑈ℎ
𝑗
⋅ 𝐷𝑈ℎ

𝑗
𝑑𝑥 = න

𝐷𝑗

D ෨𝐹 𝑈ℎ
𝑗

𝑑𝑥 = ቚ෨𝐹 𝑈ℎ
𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2



Together with that, we find 
1

2
𝜕𝑡 𝑈ℎ 𝐿2 𝐷𝑗

2 = − ෨𝐹 𝑈ℎ
𝑗
− ቤ𝑈ℎ

𝑗
⋅ 𝐹∗ − 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

Summing over all cells leads to 

1

2
𝜕𝑡 𝑈ℎ 𝐿2 Ω

2 =෍

𝑗

− ෨𝐹 𝑈ℎ
𝑗
− ቤ𝑈ℎ

𝑗
⋅ 𝐹∗− 𝐹 𝑈ℎ

𝑗

𝑥𝑗−1/2

𝑥𝑗+1/2

We will reorder the sum and take a look at the interface values. If the values at each interface sum 
to a non-positive term, then we can conclude 

1

2
𝜕𝑡 𝑈ℎ 𝐿2 Ω

2 ≤ 0

This can be shown when the flux is monotone (increasing in first variable, decreasing in second 
variable), see textbook (Theorem 12.8)



We now devote some attention to the accuracy of DG schemes. 

We mimic the error analysis for FD/FV schemes. Let us assume we have a linear scalar problem 
𝜕𝑡𝑈+ 𝐿𝑈 = 0

We define the error as 
𝜖ℎ 𝑥, 𝑡 = 𝑈 𝑥, 𝑡 − 𝑈ℎ(𝑥, 𝑡)

Suppose that 𝐿ℎ approximates 𝐿. We then have 

𝜕𝑡 𝜖ℎ 𝑥, 𝑡 + 𝐿 𝑈 − 𝐿ℎ𝑈ℎ = 0

𝜕𝑡 𝜖ℎ 𝑥, 𝑡 + 𝐿ℎ 𝑈 − 𝐿ℎ𝑈ℎ = 𝐿ℎ𝑈 − 𝐿 𝑈

𝜕𝑡 𝜖ℎ 𝑥, 𝑡 + 𝐿ℎ𝜖ℎ 𝑥, 𝑡 = (𝐿ℎ−𝐿) 𝑈 =:𝑇(𝑈)



This expresses the error as the solution of a differential equation with a source 
term

𝜕𝑡 𝜖ℎ 𝑥, 𝑡 + 𝐿ℎ𝜖ℎ 𝑥, 𝑡 = (𝐿ℎ−𝐿) 𝑈 =:𝑇(𝑈)

The solution can be looked up from any ODE textbook:

𝜖ℎ 𝑥, 𝑡 = exp( −𝐿ℎ𝑡)𝜖ℎ 𝑥, 0 + න
0

𝑡

exp 𝐿ℎ 𝑠 − 𝑡 𝑇 𝑈(𝑠) 𝑑𝑠

With that definition in mind, we get the estimate

𝜖ℎ 𝑥, 𝑡 = exp( −𝐿ℎ𝑡) ⋅ 𝜖ℎ 𝑥, 0 + න
0

𝑡

exp 𝐿ℎ 𝑠 − 𝑡 ⋅ 𝑇 𝑈(𝑠) 𝑑𝑠



For convergence we need 
1. 𝜖ℎ 𝑥, 0 → 0
2. 𝑇 𝑈(𝑠) → 0

3. exp 𝐿ℎ 𝑠 − 𝑡 → 0

This rewrites the error as the sum of two parts:

1) Approximation of the initial data: 
𝜖ℎ 𝑥, 0 ≤ 𝑐ℎ𝑚+1

2) Accumulation of the truncation error:

Complicated, see the book

In total, one can show that

1D: 𝑈 − 𝑈ℎ ≤ 𝑐ℎ𝑚+1/2 (sub-optimal)

1D: 𝑈 − 𝑈ℎ ≤ 𝑐ℎ𝑚+1 (for linear problems with strict upwinding)

2D+3D: 𝑈 − 𝑈ℎ ≤ 𝑐ℎ𝑚+1/2 (sub-optimal)



Consider the weak formulation over the 𝑗-th cell:

𝑀𝑗𝜕𝑡𝑈
𝑗 − 𝑆𝑗

𝑡
𝐹𝑗 = − ቚΦ𝑗𝐹∗

𝜕Ωj

This is still a semi-discrete formulation. What does the time discretization look like?

Relevant question in the choice of the time discretization include:

1) What is the accuracy, that is, the local discretization error?

2) Does the time discretization have oscillations?

3) Do conserved quantities stay conserved?

Let 𝑘 > 0 be the size of the time step, as before.

We review a few examples. 











We now pay some attention to the implementation of the matrices associated to each cell.

We use a map from a reference cell 𝐷 = −1,1 onto each physical cell 𝐷𝑗 = 𝑥𝑗−1/2, 𝑥𝑗+1/2 :

𝑥𝑗: −1,1 → 𝑥𝑗−1/2, 𝑥𝑗+1/2 , 𝑟 ↦ 𝑥𝑗−1/2 +
1 + 𝑟

2
ℎ𝑗,

where ℎ𝑗 denotes the cell diameter. With that we have on the 𝑗-th cell:

Φ𝑗
𝑖 𝑥 𝑟 = Φ𝑖 𝑟 ֞ Φ𝑖 𝑥−1 𝑥 = Φ𝑗

𝑖 𝑥

Typically, we define the physical basis functions as transforms of reference basis functions.



Thus we can rewrite the solution on each cell via

𝑈ℎ
𝑗
𝑥(𝑟), 𝑡 = ෍

𝑖=0

𝑚

𝑈𝑗
𝑖 𝑡 Φ𝑗

𝑖 𝑥 𝑟 =෍

𝑖=0

𝑚

𝑈𝑗
𝑖 𝑡 Φ𝑖 𝑟

Similarly, we can define reference matrices such that 𝑀𝑗 =
ℎ𝑗

2
𝑀 and 𝑆 = 𝑆𝑗. We have:

න
𝐷𝑗

Φ𝑗
𝑝
𝑥 Φ𝑗

𝑞
𝑥 = න

𝐷𝑗

Φ𝑝 𝑥𝑗
−1 𝑥 Φ𝑞 𝑥𝑗

−1 𝑥 =
ℎ𝑗
2
න
𝐷

Φ𝑝 𝑟 Φ𝑞 𝑟

න
𝐷𝑗

Φ𝑗
𝑝
𝑥 𝜕𝑥Φ𝑗

𝑞
𝑥 = න

𝐷𝑗

Φ𝑝 𝑥𝑗
−1 𝑥 𝜕𝑥 Φ𝑞 𝑥𝑗

−1 𝑥 = න
𝐷𝑗

Φ𝑝 𝑥𝑗
−1 𝑥 𝜕𝑟Φ

𝑞 𝑥𝑗
−1 𝑥

2

ℎ𝑗
= න

𝐷

Φ𝑝 𝑟 𝜕𝑟Φ
𝑞 𝑟

The choice of the reference basis determines the physical matrices and their algebraic properties. 

What are possible choices for the reference basis?



Option 1: monomial basis
𝜙𝑖 𝑟 ≔ 𝑟 𝑖 , 0 ≤ 𝑖 ≤ 𝑚

The 𝐿2 projection 𝑈ℎ of any function 𝑈 onto the approximation space is calculated by solving (local) linear 
systems of equations involving the local mass matrix. We want 

න
𝐷

𝑈ℎ 𝑟 𝜙𝑖 𝑟 = න
𝐷

𝑈 𝑟 𝜙𝑖 𝑟

When we write 

𝑈ℎ(𝑟) = ෍

𝑙=0

𝑚

𝑈𝑙𝜙𝑙(𝑟)

Then we get the linear system

෍

𝑙=0

𝑚

𝑈𝑙 න
𝐷

𝜙𝑙 𝑟 𝜙𝑖 𝑟 = න
𝐷

𝑈 𝑟 𝜙𝑖 𝑟

However, the mass matrix for the monomial basis resembles the Hilbert matrix,

𝑀𝑘,𝑙 =
1 + −1 𝑘+𝑙

𝑘 + 𝑙 − 1
And one can show that it’s properties are not conductive (bad conditioning).



Option 2: orthonormal

With some additional effort, we can construct an 𝐿2 - orthonormal reference basis, 
using the Gram-Schmidt process. 

The resulting mass matrix is diagonal. 

This connects to the theory of orthogonal polynomials. We have 



The reference matrices can be computed when the bases are fixed in advance. 

We still need to integrate 𝑈 against the polynomial basis in order to determine the 
right-hand side of the system. One possibility is numerical quadrature.

We can choose the quadrature points and weights to get the Gauss quadrature 
formula that is exact up to degree 2𝑚 + 1.

This is an identity whenever 𝑈 ∈ 𝑃𝑚 .



We have determined the approximations using integral identities. We call the coefficients 
the modal coefficients:

𝑈ℎ(𝑟) =෍

𝑖=0

𝑚

෡𝑈𝑖𝜙𝑖(𝑟)

Alternatively, we can express the approximation in terms of the Lagrange polynomials with 
respect to some nodal points ෤𝑟0 , ෤𝑟1, … , ෤𝑟𝑚 .

𝑈ℎ 𝑟 =෍

𝑖=0

𝑚

෩𝑈𝑖 𝑙𝑖 𝑟 , ෩𝑈𝑖 = 𝑈ℎ ෤𝑟𝑖

The coefficients are generally not the same, but they can be translated into each other 
(change of basis).

Moreover, computing the approximation via integral identities is generally not the same as 
computing the approximation via nodal interpolation. However, we can show 
approximation estimates of order 𝑚 + 1 for both.



Lastly, we discuss a discrete entropy condition satisfied by discontinuous Galerkin methods. 
Consider the weak formulation over the cell 𝐷𝑗

න
𝐷𝑗

𝜕𝑡𝑈ℎ
𝑗
Φ𝑗 𝑑𝑥 − න

𝐷𝑗

𝐹 𝑈ℎ
𝑗
∇Φ𝑗 𝑑𝑥 = − ቚΦ𝑗 ⋅ 𝐹∗

𝑥𝑗−1/2

𝑥𝑗+1/2

We plug in Φ𝑗 = 𝑈𝑗, and the drop the index ℎ for simplicity.

න
𝐷𝑗

𝜕𝑡𝑈
𝑗𝑈𝑗 𝑑𝑥 −න

𝐷𝑗

𝐹 𝑈𝑗 ∇𝑈𝑗𝑑𝑥 = −𝐹𝑗+1/2
∗ 𝑈𝑗 𝑥𝑗+1/2 + 𝐹𝑗−1/2

∗ 𝑈𝑗(𝑥𝑗−1/2)

Let ෨𝐹(𝑢) be an antiderivative of the flux 𝐹. Then we can write 

න
𝐷𝑗

𝜕𝑡
𝑈𝑗 2

2
𝑑𝑥 − ෨𝐹 𝑈𝑗 𝑥

𝑗+
1
2

+ ෨𝐹 𝑈𝑗 𝑥
𝑗−

1
2

+ 𝐹
𝑗+

1
2

∗ 𝑈𝑗 𝑥
𝑗+

1
2
− 𝐹

𝑗−
1
2

∗ 𝑈𝑗 𝑥
𝑗−

1
2
= 0



Consider the last few terms:

− ෨𝐹 𝑈𝑗 𝑥
𝑗+

1
2

+ 𝐹
𝑗+

1
2

∗ 𝑈𝑗 𝑥
𝑗+

1
2
+ ෨𝐹 𝑈𝑗 𝑥

𝑗−
1
2

− 𝐹
𝑗−

1
2

∗ 𝑈𝑗 𝑥
𝑗−

1
2

We rewrite this:

− ෨𝐹 𝑈𝑗 𝑥
𝑗+

1
2

+ 𝐹
𝑗+

1
2

∗ 𝑈𝑗 𝑥
𝑗+

1
2
+ ෨𝐹 𝑈𝑗−1 𝑥

𝑗−
1
2

− 𝐹
𝑗−

1
2

∗ 𝑈𝑗−1 𝑥
𝑗−

1
2

− ෨𝐹 𝑈𝑗−1 𝑥
𝑗−

1

2

+ 𝐹
𝑗−

1

2

∗ 𝑈𝑗−1 𝑥
𝑗−

1

2

+ ෨𝐹 𝑈𝑗 𝑥
𝑗−

1

2

− 𝐹
𝑗−

1

2

∗ 𝑈𝑗 𝑥
𝑗−

1

2

We define 
෠𝐹𝑗+1/2 = − ෨𝐹 𝑈𝑗 𝑥

𝑗+
1
2

+ 𝐹
𝑗+

1
2

∗ 𝑈𝑗 𝑥
𝑗+

1
2

Thus the above term becomes 

෠𝐹𝑗+1/2 − ෠𝐹𝑗−1/2 − ෨𝐹 𝑈𝑗−1 𝑥
𝑗−

1
2

+ 𝐹
𝑗−

1
2

∗ 𝑈𝑗−1 𝑥
𝑗−

1
2
+ ෨𝐹 𝑈𝑗 𝑥

𝑗−
1
2

− 𝐹
𝑗−

1
2

∗ 𝑈𝑗 𝑥
𝑗−

1
2



We further inspect 

Θj−1/2 ≔−෨𝐹 𝑈𝑗−1 𝑥
𝑗−

1
2

+𝐹
𝑗−

1
2

∗ 𝑈𝑗−1 𝑥
𝑗−

1
2
+ ෨𝐹 𝑈𝑗 𝑥

𝑗−
1
2

− 𝐹
𝑗−

1
2

∗ 𝑈𝑗 𝑥
𝑗−

1
2

There exists 𝜉 between 𝑈𝑗−1 𝑥
𝑗−

1

2

and 𝑈𝑗 𝑥
𝑗−

1

2

such that 

෨𝐹 𝑈𝑗 𝑥
𝑗−

1
2

− ෨𝐹 𝑈𝑗−1 𝑥
𝑗−

1
2

= ෨𝐹′(𝜉) 𝑈𝑗 𝑥
𝑗−

1
2

−𝑈𝑗−1 𝑥
𝑗−

1
2

And so we can write

Θj−1/2 = ෨𝐹′ 𝜉 − 𝐹
𝑗−

1
2

∗ 𝑈𝑗 𝑥
𝑗−

1
2

−𝑈𝑗−1 𝑥
𝑗−

1
2

= 𝐹 𝜉 − 𝐹
𝑗−

1

2

∗
𝑈𝑗 𝑥

𝑗−
1

2

− 𝑈𝑗−1 𝑥
𝑗−

1

2

If the numerical flux 𝐹∗ is the consistent with the flux 𝐹, and if the numerical flux is monotone 
(increasing in left value, decreasing in right value), then the last expressions is ≤ 0.



To summarize, we have shown that 

න
𝐷𝑗

𝜕𝑡
𝑈𝑗 2

2
𝑑𝑥 + ෠𝐹𝑗+1/2 − ෠𝐹𝑗−1/2 + Θj−1/2 = 0

Writing 𝜂 𝑢 =
1

2
𝑢2, we observe a discrete entropy condition:

න
𝐷𝑗

𝜕𝑡𝜂(𝑢) 𝑑𝑥 + ෠𝐹𝑗+1/2 − ෠𝐹𝑗−1/2 ≤ 0

We observe that

𝜕𝑢 ෠𝐹 𝑢, 𝑢 = −𝜕𝑢 ෨𝐹 𝑢 + 𝜕𝑢 𝐹∗ 𝑢,𝑢 𝑢 = −𝐹 𝑢 + 𝐹′ 𝑢 𝑢 + 𝐹(𝑢)

whereas the entropy flux corresponding to 𝜂 equals

Ψ 𝑢 = ∫ 𝜂′ 𝑢 𝐹′ 𝑢 𝑑𝑢 = ∫ 𝐹′ 𝑢 𝑢 𝑑𝑢



A few words about parallelization in the context of DG methods.

In a parallel computing environment, we have N computers that can 
send messages to each other. 

Typically sending messages requires more wall-clock time than the the
local computations. Hence in such a computing environment:

We want to few recipients, few messages, and short messages.

If that can be insured, we often observe a speed up in comparison to 
a serial implementation. 



Ideally the computing time is antiproportional to the number of 
machines.

In practice, the parallel overhead takes over at some point. 



Application to numerical PDE: 

We distribute the mesh over several computers. At each time step, the evolution over a local cell 
requires information from the neighboring cells, which might be managed on another computer. 

We want to keep the parallel overhead low and the local computation load balanced.

In the DG method for conservation laws, the numerical flux 𝐹∗ depends on the values in the two 
neighboring cells. So its computation at each time step requires values from cells that might be 
managed on another computer.



Example: 4 machines managing a 4x4 grid



Example: 4 machines managing a 4x4 grid



Example: 4 machines managing a 4x4 grid



Typically, the distribution is heuristically optimized before the 
computation begins in a preprocessing step.

Example heuristic: minimize interface surface while keeping the 
volumes comparable.

If local mesh refinement is performed, then the load may become 
unbalanced over time, and redistribution becomes reasonably.



That’s all for DG methods


