Numerical methods for conservation laws
17: Discontinuous Galerkin methods




Recall

* We have discussed (weighted) essentially non-oscillatory schemes, which
can be seen as an adaptive generalization of linear higher-order schemes.
Their behavior is very nonlinear and they use a cartesian mesh.

* We now discuss another approach to numerical methods for conservation
laws: discontinuous Galerkin methods. (DG methods)

e DG methods share ideas with finite element methods

* Remark: as we have seen, in many simple cases, the differences between
the different methods (FD,FV,DG) are only notational.



Recap: Continuous Galerkin methods (finite element mini-recap)

The model problem for Galerkin methods in numerical PDE is the Poisson
problem with homogeneous Dirichlet boundary conditions:

—u' (x) = g(x), x € (0,1)
u(0) =0, u(1) = 0.

How to develop numerical methods for those? First reformulate the problem.

Note that u is a solution only if for all test function ¢ € C.°(0,1)

1 1
_ f u ()b () dx = j 9)P(x)dx
0 0



We integrate by parts: u is a solution only if for all test function ¢ € C.°(0,1)
the weak formulation holds:

1 1
f W ()P (x)dx = f 900 () dx (+)
0 0

We let H}(0,1) be the space of square-integrable functions whose weak
derivative is square-integrable and satisfies u(0) = u(1) = 0 at the
boundary.

Weak formulation: suppose that g € L?(0,1). We seek u € H3(0,1) such
that for all ¢ € H}(0,1) we have () satisfied.



Theorem:

Suppose that g € L%(0,1). There exists u € Hj(0,1) satisfying the weak
formulation.

Weak formulations work well for the theoretical understanding of partial
differential equations. How can we use them to develop numerical
methods?

ldea: u is sought within a trial space (here, H§ (0,1)) and then tested
against functions from a test space (again, Hy(0,1)).

What if use the weak formulation but the trial and test spaces are
subspaces?



Consider some subspaces of H}(0,1):

* The space of degree m polynomials, P™([0,1]) satisfying the boundary
conditions.

* The span of the first m sine modes: sin(2mtkx), 1<k <m

* The space of continuous piecewise linear functions with respect to
some partition of the interval and satisfying the boundary conditions.



The last example is the mostimportant one: it is the Lagrange space and leads to the
finite element method.
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Their spatial derivative is piecewise constant
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Obviously, these functions constitute a finite-dimensional subspace of H(} (0,1)



A basis of the Lagrange space is given by the hat
functions @; corresponding to the inner nodes.

We can write every v,, € I/}, as a linear combination of
those hat functions.
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Suppose we have fixed a subspace V,, € H}(0,1).

Galerkin formulation: we seek u, € V}, such that for all ¢, € V}:

1 1
[ uhGogr@dx = [ gaGgndx
0 0

Theorem:

Suppose that f € L?(0,1). There exists u,, € V,, satisfying the Galerkin
formulation.



What about finite element methods for conservation laws? Consider the
viscous problem

d.u + 0, F(u) = edi u
over the interval (0,1) and with homogeneous boundary conditions.

A weak formulatlon reads: forall ¢ € C.°(0,1) .

6tu(x t)p(x) — F(u)d,p(x,t) dx = —Ef u'(x, t)p'(x)dx

0

* We can set up the weak formulation with trial and test space HO(O 1)

 Similarly, we can set up the Galerkin formulation, say, using the Lagrange
space.



Galerkin formulation: find u; € V;, such that forall ¢, € V),

1

1
f 0t (%, Oy (X) — F(w)dy oy (x, ) dx = —e f wh (x, O (X)dx
0 0

* |t suffices to only test against the hat functions ®; since those are a
basis of the trial space

* We can express the solution in terms of the test functions

u(x,t) = 2 v;(t) D, (%)
i
* In combination with some time stepping scheme, we only need to
solve a finite (nonlinear) system in finitely many unknownes.



As the viscous regularization € goes to zero, the original conservation law emerges.
However, there are issues with using the Galerkin formulation:

* The integrals against F (u;,) can only be computed approximately for nonlinear
flux F (using quadrature).

e For vanishing viscosity, the solution may develop steep gradients. That happens

even in the linear case F(u) = cu. These boundary layers are difficult to
approximate unless the mesh size gets very small.
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When the solution of conservation laws develops steep gradients and jumps, then
continuous Galerkin methods will struggle to approximate the solution.

However, Galerkin methods are well-understood from a theoretical point of view
and are easily adapted to different geometries.

Can we leverage those advantages?
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The finite element method emerges when using piecewise polynomial
continuous functions in the trial and test spaces. It is a special example
of a Galerkin method.

In a discontinuous Galerkin method, we use discontinuous piecewise
polynomials for the trial and test spaces. Of course, that requires some
tweaking to make sure the method works well...

The same idea is used for conservation laws! We use a discontinuous
trial and test space, and tweak the formulation.



Step 1) We discretize the domain () into N non-overlapping cells:
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Step 2) Over each cell D; we fix a basis {CD}}ZO of the vector space

th = P (D;), functions that are degree m polynomials over D; and
vanish outside of D;.
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Step 3) We define the space of functions that are piecewise polynomial
over the mesh.

_mN J
Vh =0j=1 W

This is also known as the space of broken polynomials. These functions
may be discontinuous across cell boundaries.




Step 4) We define the global solution as the sum of cellwise global
solutions:

N m
Un(e )= ) Ul D), Uit = ) Ui o))
j=1 1=0

N — /
V, A

h

The basis functions depend only on position x, their coefficients
depend only on time t



Step 5) We define the method by a Galerkin formulation. On each cell D;:

f 0,U. vy, + div F(U])v, dx =0, v, € V)
D.

J

Using the basis, we use

0, U} @i (x) + div F(U])di(x)dx =0, 0<i<m
b;

We perform integration by parts in space:

f 0, U} di(x) — F(U))Vdi(x)dx = —f Oi()F(U))-nds, 0<i<m
D

j Dj



The problems on each cell are uncoupled.
We need to couple them between cells.

Baisc idea:

we replace the fluxes at the boundary integral on the right-hand side by a

numerical flux. At each cell interface we will incorporate data from the
neighboring cells.

A local conservation of mass holds on every cell. Taking a constant test
function, we find

f@tU,{dxz—f F(U,{)-ﬁds, 0<i<m
D; D

J J



For simplicity we consider a one-dimensional setting:
D; = [xj_1/2,%j +12]
The formulation reads:

Xj+1/2

j 0, U ! (x)dx — f F(U)Voitdx = — - F(U))
Dj Dj

Xj-1/2

We introduce a numerical flux I, incorporating data from neighboring cells and thus
providing the desired coupling:

Xj+1/2 Xj+1/2

o) F(u})

R
—CIDjF

Xj-1/2 Xj-1/2

This is called the weak formulation of the DG method.

. _ | | N
f ath]l(D]l(X)dx — J F(U}‘{)Vd)]l(x)dx — (D]l ) F*‘ j+1/2
D; ,

Xj—-1/2



We integrate the left-hand side in space again.

o . | . . Xj+1/2
0. U, ®;(x)dx + | divF(U))®j(x)dx = — ;- (F* — F(Uf{))
Dj Dj

Xj-1/2

Both formulations are equivalent, and each has benefits in the
theoretical analysis.



We define a few matrices that will be importantin the discussion

M’ =f dX () D! (x) dx, s/ =j DX (x)d, ! (x) dx
Mecs 7 "k b, j j kl b, j X ]
WMva'-x

We approximate F(U}{) by its (approximate) projection onto the local space over D;
m
Fln =) O,  xeb,
i=0
which is uniquely defined by requiring for all 0 < p < m:

j th(x, )] (x)dx = EFfi(t)J CID;(x)CD}’(x)dx =j F(U,{(x,t))d)}’(x)dx.
Dj i=0 Dj Dj



With those matrices we can rewrite the local weak formulation in terms of coefficients.

Xj+1/2

MU — ($9)'Fi = -’ - F*

Xj-1/2

where we use the vectors

. t ; t
U]. — (UO, Ujll e U]m) ’t F] — (FjO,F}'l, ’F']m) ,
b’ = (CDQ,CD}, ’CI)]m) at Xj+1/2

Similarly, the strong formulation can be expressed locally as:

. _ o . .
M’o.U) + STF) = —d’ (F* = F) j+1/2

Xj—1/2



Example (Lax-Friedrichs flux)
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In the case of the 1D transport equation with speed c

U--U"
2

a _.
F*(U-,UY) =c —En(UJr—U_)




Consider the weak formulation

|

Suppose that W(x, t) is a smooth test function and consider its L projection
Y, (x,t) onto the global space V}, of broken piecewise polynomials

. . _ _ X
0, U] ®!(x)dx —j F(U)Voi(dx = —oi-F7| /"

. . Xij—

N
Wi, t) ~ W6 0) = ) W0
=1

Here, the local L? projection is defined via

W (x, D) dx = | W di(x)dx
Dj bj



Consider its coefficient vector in the j-th cell:

i t
1_1_;] — (quO’ 1_1_{].1’ s LI_;Jm)

We multiply the weak formulation by the test function

Xj+1/2

v/ Mig Ul —w! (s))'Fi = —w/ . F*
W) - 0,U) (x) dx, jD 0,%) () - F/ (0 dx

J

Xj-1/2

Dj




Observation 1: connection to finite volume methods
Assume that the test function¥ = 1/h is constant. Then sois W, = 1/h.

When we use that test function in the weak form, then this simplifies to the local conservation of mass:

Lo Ujdx——l(F* —F: )
h t . h _ h j+1/2 j—1/2

J

We thus recover the basic form of a finite volume scheme. Summing up leads to

at Z( j+1/2 Fj*—l/z) = FIT/+1/2 - Fg—l/z

“MZ

From the local conservation of mass we get global conservation of mass.
Typically, the boundary fluxes are the same (periodic BC) or they are part of the problem data.




Observation 2: the limit of discrete solutions is a weak solution

Let us assumethat W is compactly supported on () and vanishes for large t > 0.

We integrate over the time interval and integrate by parts in time. Over each cell
this leads to

Xj+1/2

dt

. . T .
W (x,0)UJ (x, 0) dx = — JO )

. Xj—
D; j=1/2

T
J J Jow/J
—J J U, 0., + F, V¥, dxdt +
0 Dj
We study the right-hand side. As h goes to zero, we have in all relevant metrics
Y, »-¥
But then we have (because of the conservation property)
N oo
] %
> [ wir
— 70

]:

+1/2
dt - 0

Xj
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We observe

—Ef f Uy 0,%; + F V¥, dx dt+J v (x,0)U7 (x,0) dx
I 0 Dj Dj

T
:_f j U, 0.¥, +F, V¥, dxdt+jtph (x,0) Uy, (x,0) dx
0 JQ Q

Where the gradient VW, is to be understood piecewise.

If U}, converges to some function U and F(U,) converges F (U) , then in the limit we get
T
—j f U9,% + F(U)VY dx dt + f W(x, 0)U(x,0) dx = 0
0o Ja Q

This is the weak form of the conservation law.
That is, if the limit U exists, then it is a weak solution of the conservation law.



Observation 3: there is an energy preservation principle
(this takes some effort)

Consider the strong formulation:

_ _ _ _ Xj+1/2
f 0,U) di(x)dx +f div F(U} )@l (x)dx = — o} (F* = F(U]))
Dj Dj Xj-1/2
We test this formulation with the solution Uj, itself. Thus
o . : . Xj+1/2
f 8, U U (x) dx +f div F(U)) Ul () dx = —u} - (F* = F(u)))
Dj Dj Xj-1/2
We test this formulation with the solution U, itself. Thus
Xj+1/2

1 . . .
at||Uh||L2(D ) +j div F(U} Uy (x)dx = — U} -(F* —F(Ué))

Dj

Xj-1/2



Can we control the energy term ”Uh”iz(p ) over time?
]

For simplicity, we assume
F(U(0) = Fl(x,0),

that is, the approximation of the fluxis the filix of the approximation! For example, that is true if the flux

itself is a polynomial, such as in Burgers’ equation.

Otherwise, if that identity is not true, the difference will need to be estimated too.
With that assumption, and working in 1D, we arrive at

f Ul - DF/ dx =j ul - DF(U) DU} dx
Dj Dj

Suppose that F is a function with derivative DF(U])) = DF(U}) U]. Thus, with the chain rule

Xj+1/2

j Ul -DFdx =f DF(U)) - DU dx =f D(F(U,{)) dx = F(U]
5 |

. , Xi_
J Dj Dj j—1/2




Together with that, we find

1 _ ) _ Xj+1/2
2 r *
= 0ullUAN 2 ) = =F(UR) = UL - (F* = F(U)))
Xj-1/2
Summing over all cells leads to
Xj+1/2

1 . . .
2 _ ] J * J)
Eat”Uh“Lz(Q) = Z_F(Uh) — Uy - (F - F(Uh))
J Xj-1/2
We will reorder the sum and take a look at the interface values. If the values at each interface sum
to a non-positive term, then we can conclude

L U <0
2 t L%(Q) —

This can be shown when the flux is monotone (increasing in first variable, decreasing in second
variable), see textbook (Theorem 12.8)



We now devote some attention to the accuracy of DG schemes.

We mimic the error analysis for FD/FV schemes. Let us assume we have a linear scalar problem
U+ LU =0

We define the error as
en(x,t) =U(x, t) — Uy (x,t)

Suppose that L; approximates L. We then have
at Eh(x, t) + LU — LhUh =0
at Eh(x, t) + Lh U — LhUh = LhU — LU

0; €,(x,t) + Lyey(x,t) = (L,—L) U =:T(U)



This expresses the error as the solution of a differential equation with a source
term

0; €n,(x,t) + Ly (x,t) = (Ly—L) U =:T(U)

The solution can be looked up from any ODE textbook:

t

€,(x,t) = exp( —Lyt)e,(x,0) + j exp( Ly (s — t)) T(U(s)) ds
0

With that definition in mind, we get the estimate

llen e, = Hlexp( =Ly t)Il - llen(x, O +J lexp( Ln(s — )| - ITU ()l ds
0



For convergence we need
1 |lep(x,0)|| > 0
2. |ITWHI -0

3 |lexp(Lp(s =8))|| -0

This rewrites the error as the sum of two parts:

1) Approximation of the initial data:
l€n(x, 0)|| < ch™*

2) Accumulation of the truncation error:

Complicated, see the book

In total, one can show that
1D: ||U — Uy || <€ ch™*1/2 (sub-optimal)

1D: ||U — Uy || < ch™™*? (for linear problems with strict upwinding)

2D+3D: ||U — Uy || < ch™*1/2 (sub-optimal)



Consider the weak formulation over the j-th cell:

ia i — (eN\'ri — — dJ >
MI9,U) — (S/)'F chan

This is still a semi-discrete formulation. What does the time discretization look like?
Relevant questionin the choice of the time discretization include:

1) What is the accuracy, that is, the local discretization error?

2) Does the time discretization have oscillations?

3) Do conserved quantities stay conserved?

Let k > 0 be the size of the time step, as before.

We review a few examples.
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We now pay some attention to the implementation of the matrices associated to each cell.

We use a map from a reference cell D = [—1,1] onto each physical cell D; = [xj_l/z,xj+1/2]:

147
xj: [=1,1] = [xj-1/2, %j41/2), T Xj—12 T hy,

where h; denotes the cell diameter. With that we have on the j-th cell:

CI)]‘:(x(r)) = ®l(r) e D (x(x) = GD;(x)

Typically, we define the physical basis functions as transforms of reference basis functions.



Thus we can rewrite the solution on each cell via

UJ (x(1), £) = Z U@L (x(r)) = z IHOLXRO
i=0 =0

. h: )
Similarly, we can define reference matrices such that M/ = ;] M and S = S’. We have:

)

jD @ (09,9 (x) = jD o (xj-l(x))ax(cpq (xj-l(x))) - j

D

OP ()P (x) = f qav(x].-l(x))qnq(x]rl(x)):ﬁ jD OP (1) (r)

2
j Dj

@ (5709) 9,0 (5700) 1 = [ @8,
. g) D

J

The choice of the reference basis determines the physical matrices and their algebraic properties.

What are possible choices for the reference basis?



Option 1: monomial basis _ _
¢'(r) =rh 0<i<m

The L? projection U}, of any function U onto the approximation space is calculated by solving (local) linear
systems of equations involving the local mass matrix. We want

j Un(r) (1) = j U $i(r)
D D

When we write -
Un(r) = ) U'H(r)
1=0
Then we get the linear system

m

>t [ 610 ¢ = [ 6) 9

—a D D

However, the mass matrix for the monomial basis resembles the Hilbert matrix,

1+ (=D

LT k-1
And one can show that it’s properties are not conductive (bad conditioning).




Option 2: orthonormal

With some additional effort, we can constructan L? - orthonormal reference basis,
using the Gram-Schmidt process.

The resulting mass matrix is diagonal.

This connects to the theory of orthogonal polynomials. We have

50 =20 e =@

$O(r) = —
N

Nk



The reference matrices can be computed when the bases are fixed in advance.

We still need to integrate U against the polynomial basis in order to determine the
right-hand side of the system. One possibility is numerical quadrature.

We can choose the quadrature points and weights to get the Gauss quadrature
formula that is exact up to degree 2m + 1.

/ "\Uckdvd'uvc \,Je‘\t't)\'\*s
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This is an identity whenever U € P,,.



We have determined the approximations using integral identities. We call the coefficients
the modal coefficients:

%M=2WWM

Alternatively, we can express the apprOX|mat|on in terms of the Lagrange polynomials with
respect to some nodal points 7y, 7y, ..., Ty

Un(@) = ) T ), T = Up(7)
=0

The coefficients are generally not the same, but they can be translated into each other
(change of basis).

Moreover, computing the approximation via integral identities is generally not the same as
computing the approximation via nodal interpolation. However, we can show
approximation estimates of order m + 1 for both.



Lastly, we discuss a discrete entropy condition satisfied by discontinuous Galerkin methods.
Consider the weak formulation over the cell D;

J 0, U)®; dx —f FUDVe; dx =—a; -F*| """
D; D Xj-1/2
We plug in @; = U7, and the drop the index h for simplicity.
J 0, U/ U/ dx —j F(U)VU dx = —F/ 1 U/ (Xj41/2) + Fy U7 (%5-1/2)
D; D;
Let F(u) be an antiderivative of the flux F. Then we can write
9, (Uj)z dx U’ + F (U (x +F U/ x —F* U x
e GG R G G ) R G R LG



Consider the last few terms:

—F (U’ /x F* . U rx F(u/ —F* U
( (%j+ )+J+1 (%) " ( xf—%) 2 (i

We rewrite this:

(V) a5 T (V7 o) Y

—F(yl-1 J—1 J — J
F(U X ;))+F]__U X, 1)+F(U i )) FLaUY (%, 1)

We define
Fiy10=—F (U]( )+F 1U]( +1)
Thus the above term becomes

AN

F

J—§ 1—5

j+1/2 F] 1/2—F(U’ (]__ )+F.* U7 ( ]__)+F(UJ( J__ )—F_* Ul x4

=2



We further inspect

., =—F(Ui1 + F* /1 +F(U/ —F* U
S GG A S (S R () RS T O

There exists & between UJ/~1 (xj_l) and U’ <xj_l> such that
2 2
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And so we can write
e = (PO~ 53) (0 (59) =07 (5.9)) =079 (75,997 5.)

If the numerical flux F™* is the consistent with the flux F, and if the numerical flux is monotone
(increasing in left value, decreasing in right value), then the last expressionsis < 0.



To summarize, we have shown that

(9)* A R
f P > dx + Fiy12 = F—1/2 + 0j_1/2 =0
Dj

Writingn(u) = %uz, we observe a discrete entropy condition:
j On(u) dx + Fjyq)p — Fioq/ <0
Dj
We observe that

0, F(u,u) = -0, F(u) + 0,(F*(w,u) u) = —F(u) + F'(w)u + F(u)

whereas the entropy flux corresponding to n equals

Y = [ n(WF' (wWdu= [ F'(wudu



A few words about parallelization in the context of DG methods.

In a parallel computing environment, we have N computers that can
send messages to each other.

Typically sending messages requires more wall-clock time than the the
local computations. Hence in such a computing environment:

We want to few recipients, few messages, and short messages.

If that can be insured, we often observe a speed up in comparison to
a serial implementation.



ldeally the computing time is antiproportional to the number of
machines.

In practice, the parallel overhead takes over at some point.
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Application to numerical PDE:

We distribute the mesh over several computers. At each time step, the evolution over a local cell
requires information from the neighboring cells, which might be managed on another computer.

We want to keep the parallel overhead low and the local computation load balanced.
In the DG method for conservation laws, the numerical flux F* depends on the values in the two

neighboring cells. So its computation at each time step requires values from cells that might be
managed on another computer.




Example: 4 machines managing a 4x4 grid
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Example: 4 machines managing a 4x4 grid
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Example: 4 machines managing a 4x4 grid
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Typically, the distribution is heuristically optimized before the
computation begins in a preprocessing step.

Example heuristic: minimize interface surface while keeping the
volumes comparable.

If local mesh refinement is performed, then the load may become
unbalanced over time, and redistribution becomes reasonably.



That’s all for DG methods




