Numerical methods for conservation laws
16: Weighted Essentially non-oscillatory schemes




Recall
* We have introduced essentially non-oscillatory (ENO) schemes

* For these schemes, we adaptively choose a stencil of width m that we
can shift to the left or the right.

* Weighted ENO schemes: instead of picking one stencil, we more
generally can pick a weighted combination of those stencils.



What are some possible issues with ENO schemes?

* We have a range of 2m — 1 cells, but only get approximation order
O(h™) because we discard about a half of the cell values.

In smooth regions, we would like to get O (h*™™1) by using all stencils.

e Stencil selection leads to discontinuous numerical fluxes. Continuous
fluxes are more desirable.

If the divided differences are close, then rounding errors decide the stencil. We
expect that in smooth regions

* However, close to discontinuous of u, we would like to pick only one
stencil that avoids the jump (as best as possible)



How do mitigate these issues?

* Close to jumps, we still select only one stencil

* Away from jumps, we choose a weighted linear
combination of the stencils.

This leads to weighted ENO (WENO) schemes.

Main issue: how should we compute the weights?



First, suppose we are in a smooth region.

Let m be the stencil size, 1, € {—1,0}.

We search coefficients d,° such that
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Recall that r, determines the family of the stencils:

1o = 0: all stencils contain x;

ro = —1: all stencils contain x4



We want to achieve coefficients such that

These coefficients are computed by solving a linear system. (Hesthaven, Ch11.1)
Given the uniform mesh size, we can just precompute these coefficients at the
start. They are non-negative and sum up to one:

So we have a convex combination of stencil values. In particular, using those
weights as such as a linear scheme. It is of higher order, but problems show up
near discontinuities.



Consequently, instead we search for coefficients adaptively such that in smooth regions
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2) In non-smooth regions, we want w,° € {0,1} near jumps to enforce the selection of
a single stencil (namely the smoothest one).



3) Approximation in smooth regions: w:" = d;:o + 0(h™ 1)

We want to attain the accuracy under such small coefficient perturbations. We observe
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How can we construct w, in practice? There are different possibilities.

We can try:
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Where the parameters 5, = 0 are still to be computed (adaptively), and
the other parameters are fixed.

* 5, = 0 measures the roughness
e ¢ ~ 107% is a minimum roughness (avoids division by too tiny numbers).
* p controls the influence of roughness measures



How do we pick those roughness measures?
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A possible choice are (the absolute values of) the divided differences
introduced above. We discuss another variant that can be found in the
literature:
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where 1, is the reconstructed polynomial with shift parameter r.
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We remember
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We rewrite this as
dl
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Note: the parameter j enters Qq’r,j(x) only via translation x;. Except for this
translation, these polynomial terms look the same for each local problem.
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We observe
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The last integrals do not depend on j and can be computed in advance. In
particular, this is a quadratic form in the stencil vector:



What is known theoretically?

*It is possible to get accuracy O(h*™~1) for smooth
regions.

* Unfortunately, little is know for stability theory
*There are different variants in the literature



Coda: what are some practical issues with ENO and WENO schemes?

1) For boundary value problems, we need to extend the computational
domain via ghost nodes.

o T -.; U™ O g —p a R

This is similar to setting up the finite difference methods
for the Neumann problem:

—u'' = f, u'0)=0 u'@)=0



Coda: what are some practical issues with ENO and WENO schemes?

2) The higher the order, the larger the stencil, the less the locality. That
is an issue with parallel computing.
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3) Lastly, the computational effort can become quite high for large
stencil sizes.



