
Numerical methods for conservation laws
16: Weighted Essentially non-oscillatory schemes



Recall

• We have introduced essentially non-oscillatory (ENO) schemes 

• For these schemes, we adaptively choose a stencil of width 𝑚 that we 
can shift to the left or the right.

• Weighted ENO schemes: instead of picking one stencil, we more 
generally can pick a weighted combination of those stencils.



What are some possible issues with ENO schemes?

• We have a range of 2𝑚 − 1 cells, but only get approximation order 
𝑂 ℎ𝑚 because we discard about a half of the cell values.

In smooth regions, we would like to get 𝑂(ℎ2𝑚−1) by using all stencils.

• Stencil selection leads to discontinuous numerical fluxes. Continuous 
fluxes are more desirable.

If the divided differences are close, then rounding errors decide the stencil. We 
expect that in smooth regions

• However, close to discontinuous of 𝑢, we would like to pick only one 
stencil that avoids the jump (as best as possible)



How do mitigate these issues?

•Close to jumps, we still select only one stencil
•Away from jumps, we choose a weighted linear 

combination of the stencils.

This leads to weighted ENO (WENO) schemes. 

Main issue: how should we compute the weights?



First, suppose we are in a smooth region.

Let 𝑚 be the stencil size, 𝑟0 ∈ −1,0 . 

We search coefficients 𝑑𝑟
𝑟0 such that 
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Recall that 𝑟0 determines the family of the stencils:

𝑟0 = 0: all stencils contain 𝑥𝑗

𝑟0 = −1: all stencils contain 𝑥𝑗+1



We want to achieve coefficients such that
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These coefficients are computed by solving a linear system. (Hesthaven, Ch11.1) 
Given the uniform mesh size, we can just precompute these coefficients at the 
start. They are non-negative and sum up to one:
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So we have a convex combination of stencil values. In particular, using those 
weights as such as a linear scheme. It is of higher order, but problems show up 
near discontinuities. 



Consequently, instead we search for coefficients adaptively such that in smooth regions 
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1) They describe a convex combination:
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2) In non-smooth regions, we want  𝜔𝑟
𝑟0 ∈ 0,1 near jumps to enforce the selection of 

a single stencil (namely the smoothest one).



3) Approximation in smooth regions: 𝜔𝑟
𝑟0 = 𝑑𝑟

𝑟0 + 𝑂(ℎ𝑚−1)

We want to attain the accuracy under such small coefficient perturbations. We observe 
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We then compute 
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How can we construct 𝜔𝑟
𝑟0 in practice? There are different possibilities.

We can try:
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Where the parameters 𝛽𝑟 ≥ 0 are still to be computed (adaptively), and 
the other parameters are fixed.

• 𝛽𝑟 ≥ 0 measures the roughness

• 𝜖 ≈ 10−6 is a minimum roughness (avoids division by too tiny numbers).

• 𝑝 controls the influence of roughness measures



How do we pick  those roughness measures? 
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A possible choice are (the absolute values of) the divided differences 
introduced above. We discuss another variant that can be found in the 
literature:
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where 𝜋𝑟 is the reconstructed polynomial with shift parameter 𝑟.





We remember 
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We rewrite this as 
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Note: the parameter 𝑗 enters 𝑄𝑞,𝑟,𝑗
𝑙 (𝑥) only via translation 𝑥𝑗. Except for this 

translation, these polynomial terms look the same for each local problem.



We observe
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The last integrals do not depend on 𝑗 and can be computed in advance. In 
particular, this is a quadratic form in the stencil vector:



What is known theoretically?

• It is possible to get accuracy 𝑂(ℎ2𝑚−1) for smooth 
regions.

•Unfortunately, little is know for stability theory

•There are different variants in the literature



Coda: what are some practical issues with ENO and WENO schemes?

1) For boundary value problems, we need to extend the computational 
domain via ghost nodes. 

This is similar to setting up the finite difference methods 
for the Neumann problem:

−𝑢′′ = 𝑓, 𝑢′ 0 = 0, 𝑢′ 1 = 0



Coda: what are some practical issues with ENO and WENO schemes?

2) The higher the order, the larger the stencil, the less the locality. That 
is an issue with parallel computing.

3) Lastly, the computational effort can become quite high for large 
stencil sizes.


