
Numerical methods for conservation laws
15: Essentially non-oscillatory schemes



Suppose we have a function 𝑢, sufficiently smooth, and only know its cell 
averages:
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Can we reconstruct the value of 𝑢 at the cell interfaces (approximately)?



Given cell averages
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we seek a polynomial 𝜋 of degree 𝑚 − 1, where 𝑚 = 𝑝 + 𝑞 + 1 is the number of averages, 
satisfying the 𝑚 constraints 
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Ultimately, we hope to achieve an approximation quality of

𝑢 𝑥
𝑗+

1
2

= 𝜋 𝑥
𝑗+

1
2

+ 𝑂 ℎ𝑚



We consider numerous interpolation stencils that take 𝑚 averages into 
account and which differ by a shift parameter

𝑗 − 𝑟, 𝑗 − 𝑟 + 1, ⋯ , 𝑗 − 𝑟 + 𝑚 − 1



Note: In order to contain 𝑥𝑗 or 𝑥𝑗+1 in the stencil, the shift must satisfy
−1 ≤ 𝑟 ≤ 𝑚 − 1.

We have two families of stencils, each of size 𝑚



Interlude: polynomial approximation

Theorem:

Let 𝑓 ∈ 𝐶𝑚+1[𝑎, 𝑏] and let Π be the degree 𝑚 polynomial satisfying 

𝑓 𝑥𝑖 = Π(𝑥𝑖)

at interpolation points 𝑥0, … , 𝑥𝑚 ∈ [𝑎, 𝑏]. Then for each 𝑥 ∈ [𝑎, 𝑏] there exists 𝜉𝑥 ∈ [𝑎, 𝑏]
such that 
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Consequence: the interpolation is bounded in terms of 𝑓’s derivative of order 𝑚 + 1 over 
the interval [𝑎, 𝑏].



We prove the approximation property. Consider any antiderivative 𝑉(𝑥)
of 𝑢 𝑥, 𝑡 , that is, 𝑉′ 𝑥 = 𝑢(𝑥). 

We fix a shift −1 ≤ 𝑟 ≤ 𝑚 − 1. 

We let Π(𝑥) be the polynomial of degree 𝑚 that interpolates 𝑉(𝑥) at the 
cell interfaces:
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We inspect
𝜋 𝑥 = Π′(𝑥)





Over the entire interval [𝑥𝑗−𝑟−1/2, 𝑥𝑗−𝑟−𝑚−1/2 ]:

Π = 𝑉 + 𝑂(ℎ𝑚+1)

Over the entire interval [𝑥𝑗−𝑟−1/2, 𝑥𝑗−𝑟−𝑚−1/2 ]:

𝜋 = 𝑢 + 𝑂 ℎ𝑚

So the polynomial 𝜋 defined by the averages does satisfy the approximation 
property at the interface.

We can compute the polynomial 𝜋 of degree 𝑚 − 1 using 𝑚 constraints. But 
is there an explicit solution formula?



We recall the explicit formula for the polynomial interpolant, using Lagrange polynomials:
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Here, the Lagrange polynomials are defined by 
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Important properties include the Lagrange property and the partition of unity property:
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Using that representation of Π and the partition of unity formula:
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Using the fundamental theorem of calculus once more, we get
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We take  the derivative:
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Recall that we can rearrange nested sums
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can be evaluate at the interface points:
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The terms 𝑪𝒒,𝒓
𝒎 only depend on the parameters 𝐡,𝒎, 𝒍, 𝒓, but not on 𝒋.

Thus we have a concise formula for the interpolated interface values:
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How are we going to use this?

• If 𝑟 is fixed, then we get a linear scheme. 

• Instead, we choose 𝑟 adaptively

• We try to choose the shift to obtain a stable and accurate 
scheme. As a rule of thumb, we try to pick the shift such that 
jumps are avoided.



Fine, how do we choose the stencils?

We measure the smoothness over each stencil in terms of divided differences.

Suppose we have nodal points 𝑥0, 𝑥1, … , 𝑥𝑚 with distance ℎ.



Divided differences can be used to measure the “smoothness” 
of a discrete function. 



Application to stencil selection

The magnitude of divided differences gives an idea of the smoothness of a stencil. 
How do we implement this?

We begin with
𝑆0 = 𝑥𝑗

Iteratively, given a stencil 
𝑆𝑙 = 𝑥𝑗−𝑝, ⋯ , 𝑥𝑗+𝑞

we consider 
𝑆0
− = 𝑥𝑗−𝑝−1, 𝑥𝑗−𝑝, ⋯ , 𝑥𝑗+𝑞

𝑆0
+ = 𝑥𝑗−𝑝, ⋯ , 𝑥𝑗+𝑞 , 𝑥𝑗+𝑞+1

We either let 𝑆𝑙+1 = 𝑆0
− or 𝑆𝑙+1 = 𝑆0

+, depending on which of the two stencils has 
the smallest divided difference.

Remark: alternatively, we may consider all possible stencils and pick the one with 
the best “smoothness” measure. However, that requires computing all relevant 
divided difference quotients.



Application to stencil selection

This constructs the stencils containing 𝑥𝑗. We thus compute the interface 
values contributed by each cell:
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We use those approximate interface values in our conservative scheme:
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Summary and remarks:

• We have introduced essentially non-oscillatory (ENO) schemes 

• Looks at first like a linear high-order scheme to reconstruct the value 
of 𝑢 at the interface (the numerical flux might be nonlinear); but we 
adaptive shift the stencil, hence very nonlinear behavior.

• Generally speaking, ENO schemes work well in practice but our 
theoretical understanding is limited. 
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