Numerical methods for conservation laws
15: Essentially non-oscillatory schemes
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Suppose we have a function u, sufficiently smooth, and only know its cell
averages:
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Ut = —j u(x)dx
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Can we reconstruct the value of u at the cell interfaces (approximately)?



Given cell averages
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we seek a polynomial m of degree m — 1, wherem = p + g + 1 is the number of averages,
satisfying the m constraints
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Ut=—-| n(x)dx, l=j—p,...]+q
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Ultimately, we hope to achieve an approximation quality of



We consider numerous interpolation stencils that take m averages into
account and which differ by a shift parameter
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Note: In order to contain x; or x;4 in the stencil, the shift must satisty
—1<r<m-1.
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We have two families of stencils, each of size m



Interlude: polynomial approximation

Theorem:
Let f € C™*1[qa, b] and let I1 be the degree m polynomial satisfying

f(x;) = (x;)

at interpolation points xy, ..., X,,; € [a, b]. Then for each x € [a, b] there exists &, € [a, b]
such that
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Consequence: the interpolation is bounded in terms of f’s derivative of order m + 1 over
the interval [a, b].



We prove the approximation property. Consider any antiderivative V(x)
of u(x, t), thatis, V'(x) = u(x).

We fix ashift —1 <r<m —1.

We let II(x) be the polynomial of degree m that interpolates V(x) at the
cell interfaces:

H(x_ _ 1)=V(x_ _ 1), 1=0,..,m
j-r+i—5 j-r+i—5

We inspect
m(x) = I'(x)
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Over the entire interval [Xj_y_1/2, Xj—r—m-1/2 |

M=V +0(h™m™?)

Over the entire interval [xj_y_1/2, Xj—r—m-1/2 |:
m=u+0(h™)

So the polynomial T defined by the averages does satisfy the approximation
property at the interface.

We can compute the polynomial = of degree m — 1 using m constraints. But
is there an explicit solution formula?



We recall the explicit formula for the polynomial interpolant, using Lagrange polynomials:

l'[(x_ , 1)=V(x, , 1), i=20,...,m
j-rti-5 j-r+i—5
means that
S (G-r-}
x)= ) V (xj_rﬂ__l) 1 (x)
i=0 2
Here, the Lagrange polynomials are defined by
| X —X, 1
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! () = X — X
Ost’fim j—r+i—% j—r+t—%

Important properties include the Lagrange property and the partition of unity property:



Using that representation of II and the partition of unity formula:

m 1

(i-7-3)
M(x) — V( 1) = E (v(x, | 1) —v(x, 1)) 1 (x)
Jj— r—5 o j-T+i—5 j-T—%
Using the fundamental theorem of calculus once more, we get

M(x) — V( i r__) =i< zq ) Ug+j- r) li(j_ V) = hzz:q_ q+j- r’lij_ __)(x)

1=0

We take the derivative:
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Recall that we can rearrange nested sums
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The reconstructed polynomial

Ny )
m(x) = qZ Vats- er q+1 dx dx v (x)

can be evaluate at the interface points:

7n—1__ m d ('—r—l)
(Xj41/2) = z Uq+j—rz._ h—1; 2 (Xj+1/2)
q=0 “ l1=q+1

The terms CII",. only depend on the parameters h, m, [, 7, but not on j.
Thus we have a concise formula for the interpolated interface values:

U(Xjy1/2) = Z Ug+j-rCyr + O(R™)



How are we going to use this?
e If r is fixed, then we get a linear scheme.
* Instead, we choose r adaptively

* We try to choose the shift to obtain a stable and accurate
scheme. As a rule of thumb, we try to pick the shift such that
jumps are avoided.
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Fine, how do we choose the stencils?
We measure the smoothness over each stencil in terms of divided differences.

Suppose we have nodal points x, X1, ..., X,,; with distance h.
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Divided differences can be used to measure the “smoothness”
of a discrete function.
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Application to stencil selection

The magnitude of divided differences gives an idea of the smoothness of a stencil.
How do we implement this?

We begin with
So = {x;}
Iteratively, given a stencil
St =1{%-p, " %j1q)
we consider

SO; =X p-1 Xjops ) X

So = Xj=p» s Xjbq X q+1
We either let S;.; = S5 or S;.1 = S5, depending on which of the two stencils has
the smallest divided difference.




Application to stencil selection

This constructs the stencils containing x;. We thus compute the interface
values contributed by each cell:
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We use those approximate interface values in our conservative scheme:

_ _ k
an+1 = U}1 — E( F(Uj-:-1/2: Uj_+1/2) B F(Uj-l_—l/Z' Uj_—l/Z) )



Summary and remarks:

* We have introduced essentially non-oscillatory (ENO) schemes

* Looks at first like a linear high-order scheme to reconstruct the value
of u at the interface (the numerical flux might be nonlinear); but we
adaptive shift the stencil, hence very nonlinear behavior.

* Generally speaking, ENO schemes work well in practice but our
theoretical understanding is limited.
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