# Characteristics and Weak solutions

### Exercise 1

Consider the partial differential equation

$$\partial_t u(x,t) + x \partial_x u(x,t) = 0.$$

Find curves x(t) along which any solution must be constant. Show that every  $(x,t) \in \mathbb{R} \times \mathbb{R}$  lies on such a curve. Find a solution for the initial values  $u_0(x) = \cos(x)$ .

#### Exercise 2

Suppose that u is the density of a quantity over the real line. We assume that its velocity over the real line is given by

$$v(x,t) = u(x,t)^3.$$

Describe the change of the integral of u over a subinterval  $[x_1, x_2]$  in terms of the velocity v and u itself. Use the fundamental theorem of calculus to derive a conservation law, and find its characteristics. Discuss the similarity to Burgers' equation, and how this example can be generalized.

#### Exercise 3

An example for a nonlinear wave equation is

$$\partial_{tt}E = \partial_x \left( |\partial_x E|^{p-2} \partial_x E \right)$$

where  $p \geq 1$ . Reformulate this as a system of conservation laws.

## Exercise 4

Consider the transport equation

$$\partial_t u(x,t) + \partial_x \left( a(t)u(x,t) \right) = 0$$

where the velocity depends only one the time variable t. Find the characteristics and show that the characteristics do not intersect.

Suppose that u describes the density of cars along a one-dimensional street. What sort of traffic flow does this conservation law describe? This simple PDE is only for practice purposes.

#### Exercise 5

(Hard) Consider the conservation law (transport equation)

$$\partial_t u(x,t) + \partial_x \left( a(x)u(x,t) \right) = 0$$

We have seen that the characteristics satisfy the following ordinary differential equation with initial values:

$$\partial_t x(t) = a(x(t)), \quad x(0) = x_0.$$

Show that the characteristics do not intersect if the velocity is always positive. <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>This is often noted casually in the literature, but can be proven rigorously.