Exercise Set 9: Linear Systems

Exercise 1

This exercise pertains to Godunov's method for linear systems with constant coefficients,

$$q_t + Aq_x = 0. (1)$$

On linear systems, Godunov's method reduces to a generalization of the upwind method where the numerical flux is given by the following equivalent expressions

$$F(Q_l, Q_r) = AQ_l + A^-(Q_r - Q_l)$$
(2)

$$= AQ_r - A^+ (Q_r - Q_l) = \frac{1}{2} A (Q_r + Q_l) - \frac{1}{2} |A| (Q_r - Q_l) .$$
 (3)

Where $|A| = A^+ - A^-$ and $A^{\pm} = S\Lambda^{\pm}S^{-1}$. Here Λ^+ and Λ^- are diagonal matrices with non-negative and non-positive entries, respectively, such that $S^{-1}AS = \Lambda$ is the spectral decomposition of A, with $\Lambda = \Lambda^+ + \Lambda^-$. Especially, notice that

$$A = A^+ + A^- . (4)$$

Consider the one dimensional acoustics equation

$$\begin{pmatrix} p \\ v \end{pmatrix}_t + \begin{pmatrix} u_0 & K_0 \\ 1/\rho_0 & u_0 \end{pmatrix} \begin{pmatrix} p \\ v \end{pmatrix}_x = 0.$$
 (5)

This system is derived from the nonlinear Euler equation by linearizing around some fixed state, as sound waves are small perturbation in a background media. Here, K_0 is the compressibility modulus, and u_0 and ρ_0 are the the velocity and pressure, respectively. The speed of sound in the medium is given by

$$c_0 = \sqrt{K_0/\rho_0} \ . \tag{6}$$

- 1. For (5), calculate A^+ and A^- .
- 2. What is the CFL condition of Godunov's method for (5)?
- 3. Implement Godunov's method for (5) the following two sets of initial data

$$p(x,0) = \sin(2\pi x)$$
, $v(x,0) = 0$, with periodic BC (7)

$$p(x,0) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}, \quad v(x,0) = 0,, \quad \text{with open BC.}$$
 (8)

Use $u_0 = 1/2$, $K_0 = 1$, $p_0 = 1$ and solve on the interval $x \in [-1,1]$ with h = 0.01 to T = 0.4 and an appropriate time-step satisfying the CFL condition.

- 4. In the solution driven by (8), are the discontinuities visible in the numerical solution at T = 0.4? Plot and compare with the exact solution at the final time.
- 5. Now, run your code with the initial data

$$p(x,0) = \begin{cases} 1 & x < 0 \\ \sin(2\pi x) & x > 0 \end{cases}, \quad v(x,0) = 0.$$
 (9)

Does the exact solution preserve the discontinuities present in the initial condition? Are you able to observe the discontinuities in the numerical solution at T = 0.4?