Exercise Set 5: Conservative Methods

Exercise 1

Answer the following questions:

- 1. When is a numerical method said to be conservative?
- 2. What is the benefit of using a conservative numerical method? (Hint: Take a look at the Lax-Wendroff Theorem)
- 3. For a given conservation law and a conservative scheme, are we guaranteed that the weak solution obtained satisfies the entropy condition?

Exercise 2

Consider the conservative scheme with the Engquist-Osher flux

$$F^{EO}(u,v) = \frac{1}{2} \left(f(u) + f(v) - \int_{u}^{v} |f'(\xi)| d\xi \right). \tag{1}$$

- 1. Show that the numerical flux leads to a monotone scheme under suitable CFL conditions.
- 2. Assuming f is convex with a single minima at ω , show that the Engquist-Osher flux reduces to

$$F^{EO}(u,v) = f(\max(u,\omega)) + f(\min(v,\omega)) - f(\omega). \tag{2}$$

Exercise 3

In the previous exercises, we have seen that difficulties can arise when trying to approximate solution for linear problem. Additional issues can arise when dealing with non-linear problems. Consider the Burgers equation in the quasilinear form

$$u_t + uu_x = 0. (3)$$

A "natural" finite difference method can be obtained with a minor modification of the upwind method applied to the advection equation, assuming $v_i^n \ge 0$ for all j, n:

$$v_j^{n+1} = v_j^n - \frac{k}{h} v_j^n \left(v_j^n - v_{j-1}^n \right). \tag{4}$$

This method converges on smooth solutions.

1. Compute the numerical solution obtained by (4), driven by the initial condition

$$u(x,0) = \begin{cases} 1 & x < 0 \\ 0 & x \ge 0 \end{cases} . \tag{5}$$

Implement the method in Matlab and solve (3) up to T = 0.5 in the interval (-1,1) with initial condition (5). In your computations use k = 0.5h, h = 0.01.

- 2. Is the solution obtained a weak solution? Is it the entropy solution?
- 3. Now use the following initial condition in your code

$$u(x,0) = \begin{cases} 1.2 & x < 0 \\ 0.4 & x \ge 0 \end{cases} . \tag{6}$$

4. Compare the solution to the known entropy solution for Burgers, which can be constructed by considering the characteristics and shocks.

Exercise 4 1. Apply the generalization of the Lax-Friedrichs method

$$v_j^{n+1} = \frac{1}{2} \left(v_{j+1}^n + v_{j-1}^n \right) - \frac{k}{2h} \left(f \left(v_{j+1}^n \right) - f \left(v_{j-1}^n \right) \right) \tag{7}$$

to Burgers equation in conservation form,

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0 , (8)$$

with the initial conditions (5) and (6).

- 2. Does the numerical solutions converge to a weak solution?
- 3. Is this the entropy solution?
- 4. Show that the generalization of the Lax-Friedrichs method to nonlinear conservation laws can be written in conservative form.

Exercise 5 1. Solve the Burgers equation with the Engquist-Osher flux and the initial conditions (5) and (6).

- 2. Does the solution converge to the entropy solution?
- 3. How does the solution compare to that obtained with the Lax-Friedrichs scheme?