# Exercise Set 4: The Finite Difference Method

# Exercise 1 (Finite Differences Method)

Define the following concepts:

- (a) Consistency;
- (b) Stability; and,
- (c) Convergence.

Discuss the importance of these concepts, how they relate to each other, and how in general they can be established.

## Exercise 2 (Leapfrog Method)

The forward time, center space finite difference approximation to the advection equation  $u_t + au_x = 0$  leads to a method which is *unstable*. So let us try something different. By approximating the time derivative by a centered difference, instead of the forward Euler discretization, we get the Leapfrog method,

$$v_j^{n+1} = v_j^{n-1} - \frac{ak}{h}(v_{j+1}^n - v_{j-1}^n) . (1)$$

- (i) Draw the stencil of (1).
- (ii) Show that (1) is second order accurate in both space and time.
- (iii) What is an obvious disadvantage of the Leapfrog method compared to the Lax-Friedrichs or Lax-Wendroff methods?

#### Exercise 3 (Stability of the Lax-Friedrichs Method)

As a possible numerical method for the linear transport equation  $u_t + au_x = 0$ , consider the Lax-Friedrichs method

$$v_j^{n+1} = \frac{1}{2}(v_{j+1}^n + v_{j-1}^n) - \frac{ak}{2h}(v_{j+1}^n - v_{j-1}^n)$$
(2)

Show that this method is stable in the  $l^{\infty}$  norm, provided that k and h satisfy the CFL condition

$$\frac{|a|k}{h} \le 1. \tag{3}$$

## Exercise 4 (Unconditionally Stable Method)

We have seen in the previous exercise that the Lax-Friedrichs method is stable provided k and h satisfy a CFL condition. A method which is stable for any k and h is said to be *unconditionally stable*. For a > 0, prove that the following backward-time backward-space method

$$v_j^{n+1} = v_j^n - \frac{ak}{h}(v_j^{n+1} - v_{j-1}^{n+1})$$

is unconditionally stable in the  $l^{\infty}$  norm.

### Exercise 5 (Matlab Implementation)

This exercise involves some programming. Consider the scalar advection equation  $u_t + au_x = 0$  with a = 1. Let u be the solution of  $u_t + au_x = 0$  in (-1, 1) that satisfies initial condition

$$u(x,0) = u_0(x), \tag{4}$$

where

$$u_0(x) = \begin{cases} 1 & x < 0 \\ 0 & x > 0 \end{cases} , \tag{5}$$

and boundary conditions

$$u(-1,t) = 1$$
  $u(1,t) = 0$  (6)

We already know that the exact solution for 0 < t < 1 is given by  $u_0(x - at)$ , but how well do numerical methods approximate such a problem? In the following consider the schemes

$$\begin{array}{ll} \text{Upwind:} & v_j^{n+1} = v_j^n - \frac{ak}{h}(v_j^n - v_{j-1}^n) \\ \text{Lax-Friedrichs:} & v_j^{n+1} = \frac{1}{2}(v_{j+1}^n + v_{j-1}^n) - \frac{ak}{2h}(v_{j+1}^n - v_{j-1}^n) \\ \text{Lax-Wendroff:} & v_j^{n+1} = v_j^n - \frac{ak}{2h}(v_{j+1}^n - v_{j-1}^n) + \frac{(ak)^2}{2h^2}(v_{j+1}^n - 2v_j^n + v_{j-1}^n) \\ \text{Beam-Warming:} & v_j^{n+1} = v_j^n - \frac{ak}{2h}(3v_j^n - 4v_{j-1}^n + v_{j-2}^n) + \frac{(ak)^2}{2h^2}(v_j^n - 2v_{j-1}^n + v_{j-2}^n) \ . \end{array}$$

For each of the schemes above:

- 1. Implement the scheme in Matlab to solve  $u_t + au_x = 0$ , in (-1,1), with (5), and (6) in the time interval  $t \in [0,0.5]$ . For your computations use h = 0.0025 and k/h = 0.5.
- 2. Visualize the numerical solution and the exact solution.
- 3. Comment qualitatively on the solutions' behavior.
- 4. Write a script to generate a log-log plot of the error as a function of the resolution (either h, or the number of points in the spatial grid), while keeping the ratio k/h = 0.5 fixed (why is this important?).
- 5. Use the plot to deduce the accuracy of the method.
- 6. Compare your results with the accuracy you would expect on a smooth solution.