Exercise Set 3: Characteristics, Entropy and Weak solutions

Exercise 1 (Entropy Solutions)

Consider the conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, \quad u(x,0) = u_0(x),$$
 (1)

and $f(u) = u^2/2$. Consider the following initial conditions

(a)
$$u_0(x) = \begin{cases} 1, & \text{for } x < -1, \\ 0, & \text{for } -1 < x < 1, \\ -1, & \text{for } x > 1 \end{cases}$$
 and (b) $u_0(x) = \begin{cases} -1, & \text{for } x < -1, \\ 0, & \text{for } -1 < x < 1, \\ 1, & \text{for } x > 1. \end{cases}$ (2)

Draw the profile of $u_0(x)$ and sketch the characteristics of the entropy solution u(x,t) in the x-t plane, and determine u(x,t) for all t>0.

Exercise 2 (Traffic Flow Equation)

Consider the traffic flow equation

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} f(q) = 0, \tag{3}$$

where q(x,t) is the car density, U(q) is the traffic speed as a function of the car density and f(q) = qU(q). A simple model for traffic flow is obtained by taking

$$U(q) = u_m \left(1 - \frac{q}{q_m} \right),\tag{4}$$

with $u_m > 0$ and q_m being the maximum speed and maximum car density, respectively. If the car density is maximal, we say that the traffic is "bumper-to-bumper". At zero density (empty road), the traffic speed is u_m . As q approaches q_m , the speed decreases to zero. The model then reads

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} u_m \left(q - \frac{q^2}{q_m} \right) = 0. \tag{5}$$

We equip (5) with the initial condition

$$q(x,0) = \begin{cases} q_l, & \text{for } x < 0, \\ q_r, & \text{for } x > 0. \end{cases}$$
 (6)

- (a) The green light problem. Assume that the traffic is standing at a red light, placed at x = 0, while the road ahead is empty. At time t = 0, the traffic light turns green and we want to describe the car flow evolution for t > 0. To represent this situation, we set $q_l = q_m$ and $q_r = 0$ in (6). Draw the profile of $q_0(x)$ and sketch the characteristics of the entropy solution q(x,t) in the x-t plane, and determine u(x,t) for all t > 0.
- (b) **Traffic jam ahead.** We now consider the initial density profile with $q_l = \frac{1}{8}q_m$ and $q_r = q_m$. For x > 0, the density is maximal and therefore the traffic is "bumper-to-bumper". The cars on the left move with speed $U = \frac{7}{8}u_m$, so that we expect congestion. Draw the profile of $q_0(x)$ and sketch the characteristics of the entropy solution q(x,t) in the x-t plane, and determine q(x,t) for all t>0.
- (c) **Entropy Solutions.** Show that for the traffic flow equation (5), the condition $q_l < q_r$ is required for a shock to be admissible. Do this by verifying each of the following conditions:
 - (i) The entropy condition $f'(q_l) > s > f'(q_r)$.

(ii) There exists an entropy function $\eta(q)$ and a corresponding entropy flux $\psi(q)$ such that

$$s(\eta(q_r) - \eta(q_l)) \ge \psi(q_r) - \psi(q_l) \tag{7}$$

holds if and only if $q_l < q_r$.

Exercise 3 (Liu's Entropy Condition)

Consider the conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 \tag{8}$$

where $f(u) = e^u$. We discuss the Riemann problem

$$u_0(x) = \begin{cases} u_l, & \text{for } x < 0, \\ u_r, & \text{for } x > 0 \end{cases}$$

$$(9)$$

- 1. Show that when u(x,t) is a weak solution and $\lambda > 0$, then $u(\lambda x, \lambda t)$ is a weak solution too.
- 2. Suppose that the solution has a shock wave with values u_l and u_r to the left and to the right, respectively. Which values u_l and u_r are admissible on the basis of Liu's entropy condition?

Remark: the scale invariance above suggests that "physical" solutions to the Riemann problem should be scale-invariant themselves.