Exercise 12: WENO reconstruction

Exercise 1

The WENO reconstruction is based on a convex combination, with coefficients ω_r , of approximations $v_{i+1/2}^{(r)}$ calculated on k different stencils. The coefficients ω_r depend on another set of coefficients d_r and some smoothness indicators β_r .

1. The Smoothness indicators β_r are defined by

$$\beta_r = \sum_{l=1}^{k-1} \Delta x^{2l-1} \int_{x_{i-1/2}}^{x_{i+1/2}} \left(\frac{\mathrm{d}^l p_r}{\mathrm{d} x^l} (x) \right)^2 \mathrm{d} x \qquad r = 0, \dots, k-1 . \tag{1}$$

For k=2 (3rd-order reconstruction), this yields the following expressions:

$$\beta_0 = \left(\overline{U}_{i+1} - \overline{U}_i\right)^2 , \qquad \beta_1 = \left(\overline{U}_i - \overline{U}_{i-1}\right)^2 . \tag{2}$$

Verify (2).

2. The coefficients d_r are chosen so that

$$\sum_{r=0}^{k-1} d_r v_{i+1/2}^{(r)} = v\left(x_{i+1/2}\right) + O\left(\Delta x^{2k-1}\right) . \tag{3}$$

For k = 2, 3,

$$k = 2: d_0 = \frac{2}{3}, d_1 = \frac{1}{3}$$
 (4)

$$k = 3: d_0 = \frac{3}{10}, d_1 = \frac{3}{5}, d_2 = \frac{1}{10}.$$
 (5)

Explain how these values are obtained and verify (4).

- 3. Write a program that implements WENO reconstruction for both k = 2, 3.
- 4. Write a finite volume code for

$$u_t + au_x = 0$$

where the interface values are obtained by using the WENO reconstruction. Plug these values in the Godunov flux, and integrate the semi-discrete scheme using SSP-RK3. Implement the following initial conditions on the domain [-1,1] with periodic BC

$$v_0(x) = \sin(\pi x) , \quad T_f = 5 \tag{6}$$

$$v_0(x) = \begin{cases} 1 & |x| < 0.5 \\ -1 & |x| > 0.5 \end{cases}, \quad T_f = 0.5.$$
 (7)

Use a CFL of 0.5 to evaluate the time-step.

5. Run the code for k = 2, 3 and a = 1. Do you recover the expected order of convergence for (6)? Is the solution oscillatory for (7)?