
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 9 – November 13, 2024

Solutions – Linear systems: direct and iterative
methods

Exercise I (MATLAB)

a) We recall the following properties.

Proposition 1 For a non-singular matrix A ∈ Rn×n, its LU Gauss factorization exists and
is unique if and only if the principal submatrices Ai of A of order i = 1, . . . , n − 1 are non-
singular.

Proposition 2 If one of the following hypothesis for the matrix A ∈ Rn×n holds:

• A is strictly diagonally dominant by row,

• A is strictly diagonally dominant by column,

• A is symmetric and positive definite,

then there exists a unique LU Gauss factorization of A.

We observe that the matrix A1 does not satisfy the hypotheses of Proposition 2. So, in order
to verify the existence and uniqueness of the LU Gauss factorization (without the necessity
of performing the pivoting technique), we need to rely on Proposition 1. We use the following
MATLAB commands to define A1 and compute the determinants of the principal submatrices
of A:

�
n = 4;
A1 = diag(3 * ones(n, 1), 0) + diag(− 2 * ones(n − 1, 1), 1) ...

+ diag(− 1 * ones(n − 1, 1), − 1);
A1 det sub = [];
for p = 1 : n − 1

A1 det sub = [A1 det sub, det(A1(1 : p, 1 : p))];
end
A1 det sub

1

% A1 det sub =
% 3.0000 7.0000 15.0000� �
We notice that the principal submatrices A1,i of A1 for i = 1, . . . , n − 1 are non-singular
(det (A1,i) ̸= 0 for i = 1, . . . , n − 1) and, in addition, A1 is non-singular (det (A1) = 31 ̸= 0).
We conclude that there exists a unique LU Gauss factorization of A1 and performing the
pivoting technique is not strictly necessary to compute the matrices L and U .

We observe that the matrix A2 is not strictly diagonally dominant by row or column, but it
is real symmetric. We recall that a symmetric, real square matrix is positive definite if and
only if all its eigenvalues are strictly positive. To verify if A2 is positive definite, we compute
its eigenvalues in MATLAB:

�
A2 = hilb(n);
format short e
A2 eig = eig(A2)'
% A2 eig =
% 9.6702e−05 6.7383e−03 1.6914e−01 1.5002e+00
format� �
We deduce the all the eigenvalues are real and positive, and so A2 is real, symmetric, and posi-
tive definite. From Proposition 2 we deduce that there exists a unique LU Gauss factorization
of A2 (without pivoting).

b) By recalling that the MATLAB function lu may use the pivoting technique even when not
strictly necessary, we use the following MATLAB commands for the linear systems associated
to A1 and A2. For A1:�
n = 9; % Matrix A 1
A1 = diag(3 * ones(n, 1), 0) + diag(− 2 * ones(n − 1, 1), 1) ...

+ diag(− 1 * ones(n − 1, 1), − 1);
x1 ex = ones(n, 1); b1 = A1 * x1 ex;
[L1, U1, P1] = lu(A1);
[y1] = forward substitutions(L1, P1 * b1);
[x1] = backward substitutions(U1, y1);
e1 rel = norm(x1 ex − x1) / norm(x1 ex)
% e1 rel =
% 1.2820e−16
r1 rel = norm(b1 − A1 * x1) / norm(b1)
% r1 rel =
% 3.5804e−16
A1 cond = cond(A1)
% A1 cond =
% 26.3742� �
We see that the relative error is erel,1 = 1.2820 · 10−16, while the relative residual is rrel,1 =
5.3475 · 10−16, both very small and close to machine epsilon. The result can be explained
by observing that the matrix A1 is well-conditioned. Indeed, when using a direct method to
approximate the solution of the linear system, we have the following general relation between
the relative error and relative residual:

erel =
∥x− x̂∥
∥x∥

≤ K2(A) rrel, (1)

2

where x̂ is the approximate solution of the linear system Ax = b and r = b − Ax̂, with
rrel =

∥r∥
∥b∥ . When considering the linear system associated to A1, which is well-conditioned,

the right hand side of the previous error estimate is small (K2(A1) rrel,1 = 1.4104 · 10−14). So
we expect the relative error on the solution x1 to be small as well, as numerically observed.

We repeat the MATLAB commands for A2:�
A2 = hilb(n); % Matrix A 2
x2 ex = x1 ex; b2 = A2 * x2 ex;
[L2, U2, P2] = lu(A2);
[y2] = forward substitutions(L2, P2 * b2);
[x2] = backward substitutions(U2, y2);
e2 rel = norm(x2 ex − x2) / norm(x2 ex)
% e2 rel =
% 1.0906e−05
r2 rel = norm(b2 − A2 * x2) / norm(b2)
% r2 rel =
% 1.3242e−16
A2 cond = cond(A2)
% A2 cond =
% 4.9315e+11� �
We see that the relative residual is rrel,2 = 1.6218 ·10−16, still very small and close to machine
epsilon. On the other hand, the relative error is erel,2 = 2.5435 · 10−6, about ten orders of
magnitude larger than rrel,2. The reason for this can be found by looking at the large condition
number K2(A2). Using error estimate (1), we deduce that K2(A2) rrel,2 = 7.9977 · 10−5, so
that erel,2 may be significantly larger than the relative residual rrel,2. When the matrix is
ill-conditioned, the relative residual is not a satisfactory error indicator, and the approximate
solution may be affected by a large error.

c) We use the following MATLAB commands to plot relative errors, relative residuals, and
condition numbers of the linear systems (see Figure 1).

�
c1 v = []; e1 rel v = []; r1 rel v = [];
c2 v = []; e2 rel v = []; r2 rel v = [];
n vect = 4 : 13;
for n = n vect

A1 = diag(3 * ones(n, 1), 0) + diag(− 2 * ones(n − 1, 1), 1) ...
+ diag(− 1 * ones(n − 1, 1), − 1);

x1 ex = ones(n, 1); b1 = A1 * x1 ex;
[L1, U1, P1] = lu(A1);
[y1] = forward substitutions(L1, P1 * b1);
[x1] = backward substitutions(U1, y1);
e1 rel v = [e1 rel v, norm(x1 ex − x1) / norm(x1 ex)];
r1 rel v = [r1 rel v, norm(b1 − A1 * x1) / norm(b1)];
c1 v = [c1 v, cond(A1)];

A2 = hilb(n);
x2 ex = x1 ex; b2 = A2 * x2 ex;
[L2, U2, P2] = lu(A2);
[y2] = forward substitutions(L2, P2 * b2);
[x2] = backward substitutions(U2, y2);
e2 rel v = [e2 rel v, norm(x2 ex − x2) / norm(x2 ex)];
r2 rel v = [r2 rel v, norm(b2 − A2 * x2) / norm(b2)];

3

4 6 8 10 12 14
10

−20

10
−15

10
−10

10
−5

10
0

10
5

n

e
r
,
r
r
,
c
o
n
d
(A

1
)

A1. Rel . Errors and residuals, cond(A1) vs. n

er

rr

cond(A1)

4 6 8 10 12 14
10

−20

10
−10

10
0

10
10

10
20

n

e
r
,
r
r
,
c
o
n
d
(A

2
)

A2. Rel . Errors and residuals, cond(A2) vs. n

er
rr
cond(A2)

A1 A2

Figure 1: Relative errors (blue), relative residuals (red), and condition numbers (black) for the
linear systems associated to A1 (left) and A2 (right) vs. n.

c2 v = [c2 v, cond(A2)];
end
figure(11); % for A 1
semilogy(n vect, e1 rel v, '−ob', n vect, r1 rel v, '−sr', ...

n vect, c1 v, '−xk');
legend('e {rel}', 'r {rel}', 'cond(A 1)');
figure(12); % for A 2
semilogy(n vect, e2 rel v, '−ob', n vect, r2 rel v, '−sr', ...

n vect, c2 v, '−xk');
legend('e {rel}', 'r {rel}', 'cond(A 2)');� �
In Figure 1 (left), we observe that the relative errors and residuals corresponding to the
solutions of the first linear system are small for all sizes n. Also, the matrix A1 remains
well-conditioned. Consequently, the approximate solution x̂1 for n = 13 is satisfactory: the
relative error with respect to the exact solution x1 is of order 10−15.

In Figure 1 (right), we observe that the relative errors and condition numbers of A2 increase
for increasing values of n. The second linear system is ill-conditioned and the conditioning of
A2 worsens as its size increases. Even if the relative residual is small for all the considered n,
the relative error may be large in presence of large condition numbers of the matrix (see point
b)). For instance, for n = 13, we obtain that erel,2 = 1.3583, with K2(A2) = 1.7590 · 1018 and
rrel,2 = 1.4961 · 10−16. The relative residual is not a satisfactory error indicator in this case.

Exercise II (MATLAB)

a) We recall the following Proposition for the convergence of iterative methods for the solution
of the linear system Ax = b, with A ∈ Rn×n non-singular and x,b ∈ Rn, starting from any
initial solution x(0) ∈ Rn.

4

Proposition 3 Let us consider an iterative method in the form x(k+1) = Bx(k) + g, for
k = 0, 1, . . ., where the iteration matrix is B = I − P−1A for some invertible preconditioning
matrix P and g = P−1b, with an initial solution x(0). Then, the iterative method converges
to the solution x for any x(0) if and only if the spectral radius1 of the iteration matrix B,
denoted by ρ(B), is < 1. The smaller ρ(B) is, the faster the convergence of the method.

Specifically, for the Jacobi and Gauss-Seidel methods we can determine a priori the conver-
gence properties, provided that certain hypotheses are satisfied by A; we recall the following
Propositions.

Proposition 4 If the nonsingular matrix A is strictly diagonally dominant by row, then the
Jacobi and Gauss-Seidel methods converge (for any x(0)).

Proposition 5 If the nonsingular matrix A is real symmetric and positive definite, then the
Gauss-Seidel method converges (for any x(0)).

Proposition 6 If the nonsingular matrix A is tridiagonal, and all its diagonal elements are
non-zero, then the Jacobi and Gauss-Seidel methods are either both divergent or both conver-
gent. In the latter case, the Gauss-Seidel method converges faster; more precisely, the spectral
radius of the iteration matrix associated to the Gauss-Seidel method is equal to the square of
that of Jacobi.

We start from the matrix A1. We observe that it is not strictly diagonally dominant nor
tridiagonal. As such, we cannot infer a priori the convergence of the Jacobi method, but we
need to calculate the spectral radius ρ1,J = ρ(B1,J) of the associated iteration matrix B1,J .
Similarly, the matrix A1 is not symmetric. So, in order to establish the convergence of the
Gauss-Seidel method, we need to calculate the spectral radius ρ1,GS = ρ(B1,GS).

We use the following MATLAB commands:

�
n1 = 3;
A1 = [3 −2 1; 2 1.65 −1; 0 1 4];
P1 J = diag(diag(A1)); % preconditioning matrix Jacobi
B1 J = eye(n1, n1) − inv(P1 J) * A1; % iteration matrix Jacobi
rho1 J = max(abs(eig(B1 J))), % spectral radius B1 J
% rho1 J =
% 0.9851
P1 GS = diag(diag(A1)) − (− 1 * tril(A1, −1)); % prec.matr.Gauss−Seidel
B1 GS = eye(n1, n1) − inv(P1 GS) * A1; % iteration matrix Gauss−Seidel
rho1 GS = max(abs(eig(B1 GS))), % spectral radius B1 GS
% rho1 GS =
% 1.0606� �
From Proposition 3, since ρ1,J = 0.9851 < 1, the Jacobi method converges for all the choices of
the initial solution x(0). Still, the convergence is expected to be slow due to the fact that ρ1,J is
very close to 1. Conversely, the Gauss-Seidel method does not converge to the solution of the
linear systems associated to the matrix A1 for all the choices of x

(0), since ρ1,GS = 1.0606 > 1.

We move to A2. A2 is symmetric and positive definite, since all its eigenvalues are strictly
positive. We verify this with MATLAB:

1We recall that for a square matrix C of size n, the spectral radius is ρ(C) = maxi=1,...,n |λi(C)|, where {λi(C)}ni=1

are the eigenvalues of C.

5

�
n2 = 3;
A2 = [5 −3 −2; −3 3 0; −2 0 4];
eig A2 = eig(A2)'
% eig A2 =
% 0.4103 3.7126 7.8771� �
In virtue of Proposition 5, we deduce that the Gauss-Seidel method is convergent without
the need to explicitly compute ρ2,GS = ρ(B2,GS) (below, we compute ρ2,GS only for verifica-
tion purposes). However, we need to explicitly calculate the spectral radius of the iteration
matrix associated to the Jacobi method, according to Proposition 3, since the hypotheses of
Propositions 4, 5, and 6 are not satisfied. We use the following MATLAB commands:

�
P2 J = diag(diag(A2)); % Jacobi
B2 J = eye(n2, n2) − inv(P2 J) * A2;
rho2 J = max(abs(eig(B2 J)))
% rho2 J =
% 0.8944
P2 GS = diag(diag(A2)) − (− 1 * tril(A2, −1)); % Gauss−Seidel
B2 GS = eye(n2, n2) − inv(P2 GS) * A2;
rho2 GS = max(abs(eig(B2 GS)))
% rho2 GS =
% 0.8000� �
We confirm that the Gauss-Seidel method is convergent, since ρ2,GS = 0.8 < 1. The Jacobi
method is also convergent, since ρ2,J = 0.8944 < 1. We observe that the convergence of the
Gauss-Seidel method is expected to be faster than that of the Jacobi method for the linear
systems associated to A2, since, in this case, ρ2,GS < ρ2,J < 1.

We consider A3 last. The matrix is tridiagonal, and all diagonal elements are non-zero. So,
according to Proposition 6, the Gauss-Seidel and Jacobi methods are either both convergent
or both divergent. As such, it suffices to verify the convergence of one of the two methods.
For instance, we observe that A3 is symmetric and positive definite (all the eigenvalues are
positive with the minimum being 2.001). So, the Gauss-Seidel method is convergent according
to Proposition 5. Therefore, from Proposition 6, the Jacobi method also converges, and
ρ3,GS = ρ23,J . We define the matrix A3 and verify these conclusions by means of the following
MATLAB commands:

�
n3 = 100;
A3 = diag(4 * ones(n3, 1), 0) + diag(− 1 * ones(n3 − 1, 1), 1) + ...

diag(− 1 * ones(n3 − 1, 1), −1);
P3 J = diag(diag(A3)); % Jacobi
B3 J = eye(n3, n3) − inv(P3 J) * A3;
rho3 J = max(abs(eig(B3 J)))
% rho3 J =
% 0.4998
P3 GS = diag(diag(A3)) − (− 1 * tril(A3, −1)); % Gauss−Seidel
B3 GS = eye(n3, n3) − inv(P3 GS) * A3;
rho3 GS = max(abs(eig(B3 GS)))
% rho3 GS =
% 0.2498� �

6

We verify that ρ3,GS = ρ23,J = 0.2498 < 1. So, both Jacobi and Gauss-Seidel methods
converge, with the Gauss-Seidel method being the fastest.

b) We implement the MATLAB functions jacobi.m and gauss seidel.m as follows:

�
function [x, k, res] = jacobi(A, b, x0, tol, kmax)
% JACOBI solve the linear system A x = b by means of the
% Jacobi iterative method; diagonal elements of A must be nonzero.
% Stopping criterion based on the residual.
% [x, k, res] = jacobi(A, b, x0, tol, kmax)
% Inputs: A = matrix (square matrix)
% b = vector (right hand side of the linear system)
% x0 = initial solution (colum vector)
% tol = tolerence for the stopping driterion based on residual
% kmax = maximum number of iterations
% Outputs: x = solution vector (column vector)
% k = number of iterations at convergence
% res = value of the norm of the residual at convergence
%

n = size(A, 1);

k = 0;
x = x0;
res = norm(A * x − b);

x old = x0;

while(k < kmax && res > tol)
for i = 1 : n

j v old = [1 : i − 1, i + 1 : n];
x(i) = 1 / A(i, i) * (b(i) ...

− A(i, j v old) * x old(j v old));
end
res = norm(A * x − b);
k = k + 1;
x old = x;

end

return� �
�
function [x, k, res] = gauss seidel(A, b, x0, tol, kmax)
% GAUSS SEIDEL solve the linear system A x = b by means
% of the Gauss−Seidel iterative method; diagonal elements of A
% must be nonzero. Stopping criterion based on the residual.
% [x, k, res] = gauss seidel(A, b, x0, tol, kmax)
% Inputs: A = matrix (square matrix)
% b = vector (right hand side of the linear system)
% x0 = initial solution (colum vector)
% tol = tolerence for the stopping driterion based on residual
% kmax = maximum number of iterations
% Outputs: x = solution vector (column vector)
% k = number of iterations at convergence
% res = value of the norm of the residual at convergence
%

7

n = size(A, 1);

k = 0;
x = x0;
res = norm(A * x − b);

x old = x0;

while(k < kmax && res > tol)
for i = 1 : n

j v = 1 : i − 1;
j v old = i + 1 : n;
x(i) = 1 / A(i, i) * (b(i) ...

− A(i, j v) * x(j v) ...
− A(i, j v old) * x old(j v old));

end
res = norm(A * x − b);
k = k + 1;
x old = x;

end

return� �
c) We start by solving the linear system A1x1 = b1, for which only the Jacobi method converges.

We use the following MATLAB commands:

�
x1 = ones(n1, 1); b1 = A1 * x1; x0 = zeros(n1, 1);
[x1 J, k1 J, res1 J] = jacobi(A1, b1, x0, 1e−6, 1000);
err1 J = norm(x1 − x1 J), k1 J, res1 J
% err1 J =
% 2.7745e−07
% k1 J =
% 969
% res1 J =
% 9.6699e−07� �
We see that the Jacobi method converges to the solution x1,J in k1,J = 969 iterations, with

corresponding error e
(969)
1,J = ∥x1 − x

(969)
1,J ∥ = 2.7745 · 10−7 and norm of the residual r

(969)
1,J =

∥r(969)1,J ∥ = 9.6699 · 10−7. The convergence is very slow due to the fact that the spectral radius
of the iteration matrix B1,J is ρ1,J = 0.9851, very close to 1.

We repeat the procedure for the linear system A2x2 = b2, for which both the Jacobi and
Gauss-Seidel methods are convergent. We use the following MATLAB commands:

�
x2 = ones(n2, 1); b2 = A2 * x2; x0 = zeros(n2, 1);
[x2 J, k2 J, res2 J] = jacobi(A2, b2, x0, 1e−6, 1000); % Jacobi
err2 J = norm(x2 − x2 J), k2 J, res2 J
% err2 J =
% 1.6855e−06
% k2 J =
% 124
% res2 J =
% 8.8408e−07
[x2 GS, k2 GS, res2 GS] = gauss seidel(A2, b2, x0, 1e−6, 1000); % Gauss−S.

8

err2 GS = norm(x2 − x2 GS), k2 GS, res2 GS
% err2 GS =
% 1.4712e−06
% k2 GS =
% 63
% res2 GS =
% 9.8080e−07� �
For the Jacobi method, we obtain k2,J = 124, e

(124)
2,J = 1.6855 ·10−6, r

(124)
2,J = 8.8408 ·10−7. For

the Gauss-Seidel method, we obtain k2,GS = 63, e
(63)
2,GS = 1.4712 · 10−6, r

(63)
2,GS = 9.8080 · 10−7.

The convergence of the Gauss-Seidel method is faster than that of the Jacobi method since
ρ2,GS < ρ2,J < 1 (see point a)).

Finally, for the linear system A3x3 = b3, we use the following MATLAB commands:

�
x3 = ones(n3, 1); b3 = A3 * x3; x0 = zeros(n3, 1);
[x3 J, k3 J, res3 J] = jacobi(A3, b3, x0, 1e−6, 1000); % Jacobi
err3 J = norm(x3 − x3 J), k3 J, res3 J
% err3 J =
% 2.8220e−07
% k3 J =
% 25
% res3 J =
% 5.6510e−07
[x3 GS, k3 GS, res3 GS] = gauss seidel(A3, b3, x0, 1e−6, 1000); % Gauss−S.
err3 GS = norm(x3 − x3 GS), k3 GS, res3 GS
% err3 GS =
% 2.1655e−07
% k3 GS =
% 16
% res3 GS =
% 4.3476e−07� �
For the Jacobi method, we obtain k3,J = 25, e

(25)
3,J = 2.8220 · 10−7, r

(25)
3,J = 5.6510 · 10−7. For

the Gauss-Seidel method, we obtain k3,GS = 16, e
(16)
3,GS = 2.1655 · 10−7, r

(16)
3,GS = 4.3476 · 10−7.

The convergence of the two methods is relatively fast since ρ3,J and ρ3,GS are significantly
smaller than 1 (see point a)). Moreover, the convergence of the Gauss-Seidel method is faster
than that of the Jacobi method since ρ3,GS < ρ3,J .

d) We can not establish a priori the convergence properties of the Jacobi and Gauss-Seidel meth-
ods according to Propositions 4, 5, or 6, since their hypotheses are not satisfied. We compute
with MATLAB the spectral radii ρ4,J and ρ4,GS of the iterations matrices B4,J and B4,GS

associated to the methods. Since the matrix A4 depends on the parameter γ, the spectal radii
ρ4,J and ρ4,GS do too. We use the following MATLAB commands to obtain the result shown
in Figure 2:

�
gamma v = linspace(−10, 25, 2001);
rho4 J v = []; rho4 GS v = [];
for gamma = gamma v

n4 = 4;
A4 = [8 gamma −2 −1; −2 2 −gamma −3; −1 −2 18 −18; −1 −3 −7 25];
P4 J = diag(diag(A4)); % Jacobi

9

−10 −5 0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

γ

ρ

Spectral radius of B for Jacobi and Gauss−Seidel vs. γ

ρ Jacobi

ρ Gauss−Seidel

1

Figure 2: Spectral radii ρ4,J and ρ4,GS of the iteration matrices of the Jacobi and Gauss-Seidel
methods vs. γ.

B4 J = eye(n4, n4) − inv(P4 J) * A4;
rho4 J v = [rho4 J v, max(abs(eig(B4 J)))];
P4 GS = diag(diag(A4)) − (− 1 * tril(A4, −1)); % Gauss−S.
B4 GS = eye(n4, n4) − inv(P4 GS) * A4;
rho4 GS v = [rho4 GS v, max(abs(eig(B4 GS)))];

end
plot(gamma v, rho4 J v, '−b', gamma v, rho4 GS v, '−r', ...

gamma v, 1 + 0 * gamma v, '−−k');
legend('\rho Jacobi','\rho Gauss−Seidel','1');� �
From Figure 2 we deduce the following: for any initial solution x(0),

• the Jacobi method converges for −6.159 < γ < 21.45;

• the Gauss-Seidel method converges for −7.673 < γ < 10.68;

• the Gauss-Seidel method converges faster than the Jacobi method for −6.159 < γ <
7.280;

• the Jacobi method converges faster than the Gauss-Seidel method for 7.280 < γ < 10.68.

For γ = 0, both the Jacobi and Gauss-Seidel methods are convergent, but the convergence of
the Gauss-Seidel method is faster than that of Jacobi since ρ4,GS < ρ4,J < 1. With similar
arguments, we conclude that Jacobi works best for γ = 9 (ρ4,J < ρ4,GS < 1). Finally, for
γ = 15, we must select the Jacobi method, since the Gauss-Seidel method does not converge
(ρ4,J < 1, but ρ4,GS > 1).

10

