EPFL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 9 — November 13, 2024

Solutions — Linear systems: direct and iterative
methods

Exercise I (MATLAB)

a) We recall the following properties.

Proposition 1 For a non-singular matriz A € R™*" its LU Gauss factorization exists and
is unique if and only if the principal submatrices A; of A of order i =1,...,n — 1 are non-
singular.

Proposition 2 If one of the following hypothesis for the matriz A € R™*™ holds:

o A is strictly diagonally dominant by row,
o A is strictly diagonally dominant by column,

o A is symmetric and positive definite,

then there exists a unique LU Gauss factorization of A.

We observe that the matrix A7 does not satisfy the hypotheses of Proposition 2. So, in order
to verify the existence and uniqueness of the LU Gauss factorization (without the necessity
of performing the pivoting technique), we need to rely on Proposition 1. We use the following
MATLAB commands to define A7 and compute the determinants of the principal submatrices

of A:
n = 4;
Al = diag(3 % ones(n, 1), 0) + diag(- 2 x ones(n -1, 1), 1)
+ diag(- 1 « ones(n -1, 1), - 1);
Al_det_sub = [];
forp=1:n -1
Al _det_sub = [Al_det_sub, det(A1(1 : p, 1 :p)) 1;
end
Al_det_sub

% Al_det_sub =
% 3.0000 7.0000 15.0000

We notice that the principal submatrices A;; of A; for ¢ = 1,...,n — 1 are non-singular
(det (A1;) #0 fori=1,...,n— 1) and, in addition, A; is non-singular (det (4;) = 31 # 0).
We conclude that there exists a unique LU Gauss factorization of A; and performing the
pivoting technique is not strictly necessary to compute the matrices L and U.

We observe that the matrix Ao is not strictly diagonally dominant by row or column, but it
is real symmetric. We recall that a symmetric, real square matrix is positive definite if and
only if all its eigenvalues are strictly positive. To verify if As is positive definite, we compute
its eigenvalues in MATLAB:

A2 = hilb(n);

format short e

A2_eig = eig(A2)"

$ A2_eig =

% 9.6702e-05 6.7383e-03 1.6914e-01 1.5002e+00
format

We deduce the all the eigenvalues are real and positive, and so As is real, symmetric, and posi-
tive definite. From Proposition 2 we deduce that there exists a unique LU Gauss factorization
of As (without pivoting).

By recalling that the MATLAB function 1u may use the pivoting technique even when not
strictly necessary, we use the following MATLAB commands for the linear systems associated
to A1 and AQ. For Ali

n = 9; % Matrix A_1l

Al = diag(3 %« ones(n, 1), 0) + diag(- 2 = ones(n -1, 1), 1)
+ diag(- 1 « ones(n -1, 1), - 1);

xl_ex = ones(n, 1); bl = A1 » x1_ex;

[L1, Ul, P1] = lu(Al);

[v1 1 = forward._substitutions(L1, P1 % bl);

[x1] = backward._substitutions(Ul, y1l);

el_rel = norm(xl_.ex — x1) / norm(xl_ex)

% el_rel =

% 1.2820e-16

l_rel = norm(bl - A1 * x1) / norm(bl)
$ rl_rel =

-

% 3.5804e-16
Al_cond = cond(Al)
% Al_cond =

% 26.3742

J

We see that the relative error is ey 1 = 1.2820 - 10716, while the relative residual is Trell =
5.3475 - 1076, both very small and close to machine epsilon. The result can be explained
by observing that the matrix A; is well-conditioned. Indeed, when using a direct method to
approximate the solution of the linear system, we have the following general relation between
the relative error and relative residual:

€rel = ”XH;”XH < KQ(A) T'rel, (1)

is the approximate solution of the linear system Ax = b and r = b — AX, with
. When considering the linear system associated to A, which is well-conditioned,

)

where

_ Azl
Trel = I3

the right hand side of the previous error estimate is small (K2(A1) re;1 = 1.4104 - 10~1%). So
we expect the relative error on the solution x; to be small as well, as numerically observed.

We repeat the MATLAB commands for As:

A2 = hilb(n); % Matrix A_2

x2_ex = xl_ex; b2 = A2 * x2_ex;

[L2, U2, P2] = lu(A2);

[yv2 1 = forward-substitutions(L2, P2 * b2);
[x2] = backward.substitutions(U2, y2);
e2_rel = norm(x2_ex — x2) / norm(xX2_ex)

% e2.rel =

% 1.0906e-05

r2_rel = norm(b2 - A2 x x2) / norm(b2)
% r2.rel =

% 1.3242e-16
A2_cond = cond (A2)
% A2_cond =

% 4.9315e+11

We see that the relative residual is rpe 2 = 1.6218- 1016, still very small and close to machine
epsilon. On the other hand, the relative error is e 2 = 2.5435 - 1075, about ten orders of
magnitude larger than 7. 2. The reason for this can be found by looking at the large condition
number K3(As). Using error estimate (1), we deduce that Ka(As)rero = 7.9977 - 1072, so
that er1 2 may be significantly larger than the relative residual 1. 2. When the matrix is
ill-conditioned, the relative residual is not a satisfactory error indicator, and the approximate
solution may be affected by a large error.

We use the following MATLAB commands to plot relative errors, relative residuals, and
condition numbers of the linear systems (see Figure 1).

clv = [1; el.relv = []; rl.rel_v = 1;
c2.v = [1; e2_.rel.v = [1; r2_rel_v = 1;
n_.vect = 4 13;
for n = n_vect
Al = diag(3 = ones(n, 1), 0) + diag(— 2 x ones(n -1, 1), 1)
+ diag(- 1 » ones(n -1, 1), = 1);
xl_ex = ones(n, 1); bl = Al *x x1_ex;
[L1, Ul, P1 1 = lu(Al);
[yv1 1] = forward-substitutions(L1, P1 % bl);
[x1] = backward_substitutions(U1, yl);
el_relv = [el_.rel_v, norm(xl_ex - x1) / norm(xl_ex)];
rl.relv = [rl_.rel_v, norm(bl — Al x x1) / norm(bl)];
clv = [cl.v, cond(Al)];

A2 = hilb(n);

x2_ex = xl_ex; b2 = A2 * x2_ex;

[L2, U2, P2] = lu(A2);

[yv2 1 = forward-substitutions(L2, P2 % b2);

[x2] = backward_substitutions(U2, y2);

e2_.rel.v = [e2_.rel_v, norm(x2_ex — x2) / norm(x2_ex)];
r2_.rel.v = [r2_.rel_v, norm(b2 — A2 x x2) / norm(b2)];

€ry Ty cond(Ay)

Ay. Rel. Errors and residuals, cond(Ay) vs. n As. Rel. Errors and residuals, cond(Aj) vs. n

100 T T T T 10” T T T T
2
Ty
—>=cond(Ay
—% X
10° F o
10
S 3
107 = <
e
—>—cond(A) S0’k
) £
1070 g
L
1070k
¢
F——8—F8—FF—F8—F8—F8—F—+F
10720 L L L L]0720 L L L L
4 6 8 10 12 14 4 6 8 10 12
n n
Ay A

Figure 1: Relative errors (blue), relative residuals (red), and condition numbers (black) for the
linear systems associated to A; (left) and Ag (right) vs. n.

c2.v = [c2_v, cond(A2)];
end
figure(11); % for A_l
semilogy(n_vect, el_rel_v, '-ob', n.vect, rl.rel_v, '-sr',
n_vect, cl.v, '-xk')

legend('e_{rel}', 'r_{rel}', 'cond(A_-1)");

figure(12); % for A_2

semilogy(n_vect, e2_.rel_v, '-ob', n.vect, r2.rel_v, '-sr',
n_vect, c2.v, '—-xk') ;

legend('e_{rel}', 'r_{rel}', 'cond(A_2)');

In Figure 1 (left), we observe that the relative errors and residuals corresponding to the
solutions of the first linear system are small for all sizes n. Also, the matrix A; remains
well-conditioned. Consequently, the approximate solution X; for n = 13 is satisfactory: the
relative error with respect to the exact solution x; is of order 10715,

In Figure 1 (right), we observe that the relative errors and condition numbers of Ay increase
for increasing values of n. The second linear system is ill-conditioned and the conditioning of
Ay worsens as its size increases. Even if the relative residual is small for all the considered n,
the relative error may be large in presence of large condition numbers of the matrix (see point
b)). For instance, for n = 13, we obtain that e 2 = 1.3583, with K3(A4s) = 1.7590 - 10'® and
Trel,2 = 1.4961 - 10716, The relative residual is not a satisfactory error indicator in this case.

Exercise II (M ATLAB)

a) We recall the following Proposition for the convergence of iterative methods for the solution
of the linear system Ax = b, with A € R"*™ non-singular and x,b € R", starting from any
initial solution x(©) € R™.

Proposition 3 Let us consider an iterative method in the form x*t1 = Bx®) 4 g for
k=0,1,..., where the iteration matriz is B = I — P~'A for some invertible preconditioning
matriz P and g = P~'b, with an initial solution x(9). Then, the iterative method converges
to the solution x for any x© if and only if the spectral radius' of the iteration matriz B,
denoted by p(B), is < 1. The smaller p(B) is, the faster the convergence of the method.

Specifically, for the Jacobi and Gauss-Seidel methods we can determine a priori the conver-
gence properties, provided that certain hypotheses are satisfied by A; we recall the following
Propositions.

Proposition 4 If the nonsingular matrix A is strictly diagonally dominant by row, then the
Jacobi and Gauss-Seidel methods converge (for any x(o)).

Proposition 5 If the nonsingular matriz A is real symmetric and positive definite, then the
Gauss-Seidel method converges (for any x(0)).

Proposition 6 If the nonsingular matriz A is tridiagonal, and all its diagonal elements are
non-zero, then the Jacobi and Gauss-Seidel methods are either both divergent or both conver-
gent. In the latter case, the Gauss-Seidel method converges faster; more precisely, the spectral
radius of the iteration matrix associated to the Gauss-Seidel method is equal to the square of
that of Jacobi.

We start from the matrix A;. We observe that it is not strictly diagonally dominant nor
tridiagonal. As such, we cannot infer a priori the convergence of the Jacobi method, but we
need to calculate the spectral radius p; ;j = p(Bi,7) of the associated iteration matrix By ;.
Similarly, the matrix A is not symmetric. So, in order to establish the convergence of the
Gauss-Seidel method, we need to calculate the spectral radius p1,gs = p(Bi1,gs)-

We use the following MATLAB commands:

nl = 3;

Al = [3 -21; 2 1.65 -1; 01 4 71;

P1.J = diag(diag(Al)); % preconditioning matrix Jacobi

Bl1.J = eye(nl, nl) - inv(P1.J) % Al; % iteration matrix Jacobi

rhol_.J = max(abs(eig(B1.J))), % spectral radius B1_.J

% rhol_.Jd =

% 0.9851

P1.GS = diag(diag(Al)) - (— 1 % tril(Al, -1)); % prec.matr.Gauss—Seidel
B1.GS = eye(nl, nl) - inv(P1.GS) » Al; % iteration matrix Gauss-Seidel
rhol_GS = max (abs(eig(B1.GS))), % spectral radius B1_GS

% rhol_GS =

% 1.0606

)

From Proposition 3, since p1 ; = 0.9851 < 1, the Jacobi method converges for all the choices of
the initial solution x(©). Still, the convergence is expected to be slow due to the fact that p1,J is
very close to 1. Conversely, the Gauss-Seidel method does not converge to the solution of the
linear systems associated to the matrix Ay for all the choices of x(© since p1,6s = 1.0606 > 1.

We move to Az. As is symmetric and positive definite, since all its eigenvalues are strictly
positive. We verify this with MATLAB:

We recall that for a square matrix C of size n, the spectral radius is p(C) = max;—1
are the eigenvalues of C.

n | Ai(C)], where {X:(C)}7_,

,,,,,

n2 = 3;

A2 = [5 -3 -2; -330; -2041];
eig.A2 = eig(A2)"

% eig.A2 =

0.4103 3.7126 7.8771

o

In virtue of Proposition 5, we deduce that the Gauss-Seidel method is convergent without
the need to explicitly compute p2 g5 = p(B2,gs) (below, we compute py s only for verifica-
tion purposes). However, we need to explicitly calculate the spectral radius of the iteration
matrix associated to the Jacobi method, according to Proposition 3, since the hypotheses of
Propositions 4, 5, and 6 are not satisfied. We use the following MATLAB commands:

P2_.J = diag(diag(A2)); % Jacobi

B2_.J = eye(n2, n2) - inv(P2_.J) * A2;

rho2_J = max(abs(eig(B2_.J)))

$ rho2_.J =

% 0.8944

P2_.GS = diag(diag(A2)) - (- 1 % tril(A2, -1)); % Gauss—-Seidel
B2_GS = eye(n2, n2) - inv(P2_.GS) * A2;

rho2_GS = max (abs(eig(B2_.GS)))

% rho2_GS =

% 0.8000

J

We confirm that the Gauss-Seidel method is convergent, since ps g = 0.8 < 1. The Jacobi
method is also convergent, since py ;j = 0.8944 < 1. We observe that the convergence of the
Gauss-Seidel method is expected to be faster than that of the Jacobi method for the linear
systems associated to As, since, in this case, p2 gs < p2,7 < 1.

We consider Aj last. The matrix is tridiagonal, and all diagonal elements are non-zero. So,
according to Proposition 6, the Gauss-Seidel and Jacobi methods are either both convergent
or both divergent. As such, it suffices to verify the convergence of one of the two methods.
For instance, we observe that As is symmetric and positive definite (all the eigenvalues are
positive with the minimum being 2.001). So, the Gauss-Seidel method is convergent according
to Proposition 5. Therefore, from Proposition 6, the Jacobi method also converges, and
P3.GS = pg, ;- We define the matrix A3 and verify these conclusions by means of the following
MATLAB commands:

n3 = 100;

A3 = diag(4 %* ones(n3, 1), 0) + diag(- 1 » ones(n3 -1, 1), 1) + ...
diag(- 1 = ones(n3 -1, 1), -1);

P3_.J = diag(diag(A3)); % Jacobi

B3_.J = eye(n3, n3) - inv(P3_.J) = A3;

rho3.J = max (abs(eig(B3.J)))

% 0.4998

P3.GS = diag(diag(A3)) - (= 1 % tril(A3, -1)); % Gauss-Seidel
B3.GS = eye(n3, n3) - inv(P3.GS) * A3;

rho3_.GS = max(abs(eig(B3.GS)))

% rho3.GS =

% 0.2498

We verify that p3gs = p?,ﬁ ;7 = 0.2498 < 1. So, both Jacobi and Gauss-Seidel methods
converge, with the Gauss-Seidel method being the fastest.

We implement the MATLAB functions jacobi.m and gauss_seidel .m as follows:
function [x, k, res] = jacobi(A, b, x0, tol, kmax)

% JACOBI solve the linear system A x = b by means of the

% Jacobi iterative method; diagonal elements of A must be nonzero.

% Stopping criterion based on the residual.

% [x, k, res] = jacobi(A, b, x0, tol, kmax)

% Inputs: A = matrix (sgquare matrix)

% b = vector (right hand side of the linear system)

% x0 = initial solution (colum vector)

% tol = tolerence for the stopping driterion based on residual
% kmax = maximum number of iterations

% Outputs: x = solution vector (column vector)

% k = number of iterations at convergence

% res = value of the norm of the residual at convergence

n = size(A, 1);

k = 0;

x = x0;

res = norm(A x x — b);

x_old = x0;

while(k < kmax && res > tol)

for i =1 : n
jvold=[1:1 -1, i +1 :n];
x(1)=1/A(1, 1) » (b(1) ..
- A(i, j-v_old) x x_old(j-v_old));
end
res = norm(A * x — b);
k =k + 1;
x_0ld = x;
end
return
function [x, k, res] = gauss.seidel(A, b, x0, tol, kmax)

GAUSS_SEIDEL solve the linear system A x = b by means
of the Gauss—-Seidel iterative method; diagonal elements of A
must be nonzero. Stopping criterion based on the residual.

% [x, k, res] = gauss_seidel(A, b, x0, tol, kmax)

% Inputs: A = matrix (square matrix)

% b = vector (right hand side of the linear system)

% x0 = initial solution (colum vector)

% tol = tolerence for the stopping driterion based on residual
% kmax = maximum number of iterations

% Outputs: x = solution vector (column vector)

% k = number of iterations at convergence

% res = value of the norm of the residual at convergence

n = size(A, 1);

k = 0;
x = x0;
res = norm(A * x — b);

x_old = x0;

while(k < kmax && res > tol)

for i =1 : n
Jov =1 ¢ 1 - 1;
j_v_,old =1 + 1 n;
Xx(1)=1/A(1i, i) » (b(1) ...
- A(i, Jov) * x(J-v)
- A(i, jov_old) % x_old(j_v_old));
end
res = norm(A * x — b);
k =%k + 1;
x_old = x;
end
return

We start by solving the linear system A;x; = by, for which only the Jacobi method converges.
We use the following MATLAB commands:

x1 = ones(nl, 1); bl = Al * x1; x0 = zeros(nl, 1);
[x1.J, k1.J, resl_.J] = jacobi(Al, bl, x0, le-6, 1000);
errl.J = norm(x1 - x1.J0), k1l.J, resl_J

% errl Jd =

% 2.7745e-07

% kl1.J =

% 969

% resl_Jd =

% 9.6699e-07

J

We see that the Jacobi method converges to the solution x; ; in k; ; = 969 iterations, with

corresponding error 65939) = ||x1 — X§9§9)|’ = 2.7745 - 1077 and norm of the residual 7'5939) =
Hrggﬁg) | =9.6699 - 10~7. The convergence is very slow due to the fact that the spectral radius

of the iteration matrix By j is p1,;7 = 0.9851, very close to 1.

We repeat the procedure for the linear system Asxs = bg, for which both the Jacobi and
Gauss-Seidel methods are convergent. We use the following MATLAB commands:

x2 = ones(n2, 1); b2 = A2 * x2; x0 = zeros(n2, 1);
[x2_.J, k2_.J, res2.J] = jacobi(A2, b2, x0, le-6, 1000); % Jacobi
err2_.J = norm(x2 - x2_.J), k2_J, res2_J
err2.J =
1.6855e-06
k2_.J =
124
res2_J =
8.8408e-07
x2_GS, k2_.GS, res2.GS] = gauss.seidel(A2, b2, x0, le-6, 1000); % Gauss-S.

o

— d% o° o o° o

err2_GS = norm(x2 - x2_GS), k2_GS, res2_GS
% err2_GS =
1.4712e-06
k2_GS =
63
res2_GS =
9.8080e-07

o° o o°

o°

o\

J

For the Jacobi method, we obtain ky j = 124, ey 7" = 1.6855-107%, r{'3") = 8.8408-10~7. For

the Gauss-Seidel method, we obtain ky g = 63, e\oog = 1.4712 - 1076, r{%). = 9.8080 - 107,
The convergence of the Gauss-Seidel method is faster than that of the Jacobi method since
p2.Gs < p2,7 <1 (see point a)).

Finally, for the linear system Asxs = bs, we use the following MATLAB commands:

x3 = ones(n3, 1); b3 = A3 * x3; x0 = zeros(n3, 1);
[x3.J, k3.0, res3.J] = jacobi(A3, b3, x0, le-6, 1000); % Jacobi
err3.J = norm(x3 - x3_.J), k3_.J, res3_.Jd

% err3.Jd =
% 2.8220e-07
$ k3.0 =
% 25
% res3.J =
% 5.6510e-07
[x3.GS, k3.-GS, res3.GS] = gauss.seidel(A3, b3, x0, le-6, 1000); % Gauss-S.
err3_.GS = norm(x3 - x3_.GS), k3.GS, res3_GS
% err3.GS =
% 2.1655e-07
% k3.GS =
% 16
% res3.GS =
% 4.3476e-07
J
For the Jacobi method, we obtain k3 ; = 25, ez(i?) =2.8220- 1077, r:(fﬁ) = 5.6510 - 10~7. For

the Gauss-Seidel method, we obtain k3 gs = 16, eglg)s =2.1655- 1077, rélg)s =4.3476 - 10~ 7.

The convergence of the two methods is relatively fast since p3 ; and p3 s are significantly
smaller than 1 (see point a)). Moreover, the convergence of the Gauss-Seidel method is faster
than that of the Jacobi method since p3.gs < p3,;.

We can not establish a priori the convergence properties of the Jacobi and Gauss-Seidel meth-
ods according to Propositions 4, 5, or 6, since their hypotheses are not satisfied. We compute
with MATLAB the spectral radii ps,; and psygs of the iterations matrices By ; and By gs
associated to the methods. Since the matrix A4 depends on the parameter -, the spectal radii
pa,7 and pg g do too. We use the following MATLAB commands to obtain the result shown
in Figure 2:

gamma-v = linspace(-10, 25, 2001);

rhod_ Jd.v = []; rhod4 GS.v = [1;
for gamma = gamma-v
nd = 4;
A4 = [8 gamma -2 -1; -2 2 -gamma -3; -1 -2 18 -18; -1 -3 -7 25];

P4_J diag(diag(A4)); % Jacobi

Spectral radius of B for Jacobi and Gauss—Seidel vs. y

—p Jacobi
— p Gauss—Seidel

or --1
-10 -5 0 5 10 15 20 25

Figure 2: Spectral radii ps ; and ps s of the iteration matrices of the Jacobi and Gauss-Seidel
methods vs. 7.

B4_.J = eye(n4, n4d) - inv(P4_.J) = A4;
rho4_J.v = [rhod4_J.v, max(abs(eig(B4_J))) 1;
P4_GS = diag(diag(A4)) - (— 1 % tril(A4, -1)); % Gauss-S.
B4 GS = eye(n4, nd4d) - inv(P4.GS) * A4;
rhod4_GS_.v = [rho4_GS_.v, max(abs(eig(B4.GS))) 1;
end
plot (gamma.v, rho4_.J.v, '-b', gamma.v, rho4_ GS.v, '-r',
gamma-v, 1 + 0 x gamma-v, '——-k');
legend('\rho Jacobi', '\rho Gauss-Seidel','l');

From Figure 2 we deduce the following: for any initial solution x(,

e the Jacobi method converges for —6.159 < v < 21.45;
e the Gauss-Seidel method converges for —7.673 < v < 10.68;

e the Gauss-Seidel method converges faster than the Jacobi method for —6.159 < ~ <
7.280;

e the Jacobi method converges faster than the Gauss-Seidel method for 7.280 < v < 10.68.

For v = 0, both the Jacobi and Gauss-Seidel methods are convergent, but the convergence of
the Gauss-Seidel method is faster than that of Jacobi since ps s < ps4,; < 1. With similar
arguments, we conclude that Jacobi works best for v = 9 (ps,7 < psgs < 1). Finally, for
v = 15, we must select the Jacobi method, since the Gauss-Seidel method does not converge

(pa,g <1, but psgas > 1).

10

