=PrL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 8 — November 6, 2024

Solutions — Numerical integration & Linear systems:

direct methods

Exercise I (MATLAB)

2)

For the implementation, we must choose the proper quadrature nodes and weights for n = 0, 1,
and 2. For other values of n the MATLAB function should return an error, since these cases are
not implemented. Once the proper quadrature formula is defined, we rescale the quadrature
nodes and weights from the reference interval [—1, 1] to the generic interval [a, b].

function [Ih] = gauss_-legendre_simple_quadrature(fun, a, b, n)
GAUSS_LEGENDRE_SIMPLE_QUADRATURE approximate the integral of a function in
the interval [a,b] by means of the simple Gauss-Legendre quadrature formula

o\

o\

% [Th] = gauss_legendre_simple_quadrature(fun, a, b, n)
% Inputs: fun = function handle,

% a,b = extrema of the interval [a,Db]

% n + 1 = number of quadrature nodes and weights

o\

Output: Ih = approximate value of the integral

o\

)

% reference nodes and weights
switch n

case 0
y.ref = 0;
alpha_ref = 2;

case 1
y.ref = [-1/sqrt(3), 1/sqrt(3) 1;
alpharef = [1, 1 1;
case 2
y.ref = [-sqrt(15)/5, 0, sqgrt(15)/5 1;
alpha.ref = [5/9, 8/9, 5/9 1;
otherwise

error ('n must be 0, 1, or 2");

end

% nodes and weigths rescaled in the interval [a,Db]
y.rescaled = (a +b) / 2+ (b -a) / 2 x y_ref;
alpha_rescaled = (b - a) / 2 x alpha_ref;

% Integral
Ih = sum(alpha_rescaled .x fun(y_rescaled));

return

b) We compute first the exact value of the integral:

a 0; b =1;

f = @(x) sin(7/2 * x) + exp(x) - 1;

Iex =exp(1l) -2+2 /7% (1~-cos(7/ 2))
$ I.ex =

% 1.2716

Then, we move to the approximated values of the integral computed by means the simple
Gauss-Legendre quadrature formulas:

Igl.n0] = gauss_legendre_simple_quadrature(£, a, b, 0)
Igl-n0 =
1.6327

Igl.nl] = gauss_legendre_simple_quadrature(£, a, b, 1)
Igl-nl =
1.2409

Igln2] = gauss_legendre_simple_quadrature(£, a, b, 2)
Igl-n2 =
1.2724

— o° o° — o° o

o° o

The simple Gauss-Legendre quadrature formula with n = 0 just coincides with the simple
midpoint quadrature formula and the value of the approximated integral is the same obtained
in Exercise II, point b) of Series 7. In contrast, the Gauss-Legendre quadrature formula with
n = 1 already gets the first decimal figure correct, and n = 2 gets the first two decimal
figures correct. We observe that the results are much more accurate than the simple Simpson
quadrature formula, even though this latter approach uses the same number of quadrature
nodes.

—

s = simpson._composite_quadrature(£, a, b, 1)
Is =
1.3164

o° o

In fact, the simple Gauss-Legendre quadrature formula with n = 2 is even more accurate than
the composite trapezoidal quadrature formula with M = 10 sub-intervals:

It_c = trapezoidal_composite_quadrature(£, a, b, 10)
It_.c =

o\

t% 1.2673 J

Based on these result, we can easily deduce why the Gauss-Legendre quadrature formula is
sometimes considered the “gold standard” of quadratures formulas and is implemented in
most software libraries for numerical integration.

The theoretical justification for the higher accuracy of the Gauss-Legendre quadrature formu-
las with n + 1 quadrature nodes is that they have degree of exactness 2n + 1. In contrast, the
midpoint, trapezoidal, and Simpson quadrature formulas have degrees of exactness equal to
1,1, and 3 by using 1, 2, and 3 quadrature nodes, respectively. To verify this, we proceed as
in Exercise II, point e) of Series 7:

h
Il
)
x
e
X
Q.

; a = 0; b =1;
] % for visualization of the results

for d =10 : 6]

Iex =1/ (d+1);

% Gauss-Legendre n=0,1,2

Igl0 = gauss-legendre_simple_quadrature(Q@(x)f(x,d), a, b, 0);

Igll = gauss_-legendre_simple_quadrature(Q@(x)f(x,d), a, b, 1);

Igl2 = gauss-legendre_simple_quadrature(@(x)f(x,d), a, b, 2);

o

% Midpoint

Imp = (b-a) » f((a+b) /2, d);

% Trapezoidal

It=(b-a) /2 (f(a, d) + f(b, d));

% Simpson

Is=(b-a) /6% (f(a, d) +4 % f((a+b) /2, d) + £(b, d));

Table = [Table;
[d, abs(I.ex - Igl0), abs(I.ex - Igll), abs(I.ex - Igl2),
abs(I.ex — Imp), abs(I.ex — It), abs(I.ex — Is) 1 1;
end
disp('d, GL noO, GL nl1, GL n2, MidP, Trap, Simp"')
disp (num2str (Table))

% d, GL nO, GL nl, GL n2, MidP, Trap, Simp
% 0 0 0 0 0 0 0
%1 0 0 0 0 0 0
% 2 0.083333 0 5.5511le-17 0.083333 0.16667 0
% 3 0.125 2.7756e-17 0 0.125 0.25 0
% 4 0.1375 0.0055556 0 0.1375 0.3 0.0083333
% 5 0.13542 0.013889 2.7756e-17 0.13542 0.33333 0.020833
% 6 0.12723 0.022487 0.00035714 0.12723 0.35714 0.034226

(Errors < 107! should be considered as zero due to round-off.)

Again, we notice that the Gauss-Legendre quadrature formula with n = 0 and the midpoint
quadrature formula are equivalent. For both these formulas and the trapezoidal quadrature
formula, we verify the degree of exactness 1, since the corresponding errors are zero for d < 1.
The Gauss-Legendre quadrature formula with n = 1 has degree of exactness equal to 3, just
as the Simpson quadrature formula (but the former only uses two quadrature nodes instead
of three). The Gauss-Legendre quadrature formula with n = 2 has degree of exactness equal
to 2n + 1 = 5 (the error is zero for d < 5). The results confirm the predictions given by the
theory (see also Exercise II, point e) of Series 7).

Exercise II (Theoretical)

By taking f(z) = co + c1z + cox? + czx? for some ¢, ¢1, ¢ and ¢z € R. We have

1
I(f) = /_1 f(x)dx = 2CO+§C2

By setting n = 1, we have
Iora(f) = (a6 + a5)eo + (a§ 56" + Sy)er
+ (G5 + aFH) ea + (aGHGEH + aTH G s

Plugging the values of §5%, 777, a5, and af in the equation above, we verify that Iy 1(f) = I(f)

for all cg, c1, c2 and ¢3 € R. We deduce that the Gauss-Legendre formula Iy, 1 (f) integrates exactly
polynomials of degree (up to) 3 regardless of their coefficients ¢, c1, c2 and c3 € R.

Exercise III (MATLAB)

a) The forward substitution algorithm for system Ly = b, where L has components [;; and
y,b € R™ have components g; and b;, reads:

b1
1= 7
Y l11
1 —1
k43]:1

Correspondingly, the backward substitution algorithm for system Ux =y reads:

_ Yn
Ty = —,
Unn
n
1 Z .
Ti=— | Yi— U5 5T 5 Z:n—l,...,l.
Uis

j=it+1

We implement the algorithms in MATLAB as:

function [y] = forward.substitutions(L, b)
FORWARD_SUBSTITUTIONS solve the linear system L y = b by means of the
forward subsitutions algorithm; L must be a lower triangular matrix

o\

o\

% [v] = forward_substitutions(L, b)

% Inputs: L = lower triangular matrix (square matrix)

% b = vector (right hand side of the linear system)
% Output: y = solution vector (column vector)

o\

size(L, 1);

y = zeros(n, 1);
y(1)=Db(1l) /L1, 1);
for 1 = 2 : n

Jov =1 ¢ 1 - 1;

end

return

function [x] = backward._substitutions(U, vy)
BACKWARD_SUBSTITUTIONS solve the linear system U x = y by means of the
backward subsitutions algorithm; U must be an upper triangular matrix

[x] = backward_substitutions(U, y)
Inputs: U = upper triangular matrix (square matrix)

y = vector (right hand side of the linear system)
Output: x = solution vector (column vector)

o° o o o° d° o° o

n = size(U, 1);
x = zeros(n, 1);
x(n) =y(n) /U(n, n);
for i = n -1 -1 : 1
jov =1 + 1 n;
x(1)=1/0C41i, 1) « (y(1i) -UC1i, Jov) » x(Jv));
end
return

b) The first two outputs of the MATLAB command [L,U,P] = lu(A) are the matrices L
and U, respectively. The third one is the permutation matrix P associated to the pivoting
technique. When pivoting is performed, the LU factorization corresponds to:

LU = PA,

where P is the permutation matrix! corresponding to the reordering of the rows performed
during pivoting. When pivoting is applied (i.e. P # I), we must take the permutation matrix
P into account when performing the forward substitution, since now:

Ly = Pb,
Ux=y.

LUx = Pb <~

Note that if we had given only Qae command [L, U] = lu(n), then MATLAB will return
two matrices L and U such that LU = A. In this case L = PTL, where L is a lower triangular
matrix, while L is not, in general, lower triangular.

The MATLAB code to solve the linear system Ax = b via LU factorization reads:

A=14-2-1; -1 3 -1; -1 -3 5 1;

x_ex = ones(3, 1);

b =A% x_ex;

% te: MATLAB may perfom pivoting even when not strictly necessary
[L, U, P] = 1u(A);

[v 1 = forward_substitutions(L, P % b);

! A permutation matrix P has elements that are either 0 or 1 and it is such that PTP = I, i.e. PT represents the
inverse permutation of P, since P~* = PT in this case.

[x] = backward_substitutions(U, y);
err = norm(x — X_ex)

% err =
% 3.8459%9e-16

The obtained solution matches the exact one up to machine precision. If we inspect the
permutation matrix P, we find:

p

$ P =

% 1 0 0
% 0 0 1
% 0 1 0

This confirms that the MATLAB function 1u has performed pivoting, opting to swap the
second and third rows during the LU factorization.

Banded matrices such as A can be built in MATLAB in few lines of code, by using the
diag command to construct each (sub)diagonal separately and then summing together all
the contributions. The command diag (vect, k) builds a matrix where the values contained
in the vector vec are placed on the subdiagonal k. The value k = 0 refers to the main diagonal
of the matrix, k > 1 corresponds to the k-th upper subdiagonal and k < —1 to the k-th lower
subdiagonal. Note that, in order to obtain matrices of proper dimension, we need to make
sure that the size of vec is n — k.

n = 20;

A = diag(4 « ones(n, 1), 0) + ...
diag(-1 » ones(n -1, 1), 1) +
diag(-2 = ones(n -1, 1), — 1) +
diag(-1 = ones(n -2, 1), - 2);

A(n, 1) =-1;

A(1l, n) =1;

figure; spy(A

figure; spy(L

)
[L, U, P] =1u(A)j;
)
figure; spy(U)

From the pattern of the matrix A (Figure 1) and its LU factorization matrices L and U
(Figure 2), we observe that the two off-diagonal elements cause a “fill-in” in the two matrices.
In this case the fill-in only affects one row (resp. column) of the matrix L (resp. U). The
solution of the linear system can be obtained using the code from point b).

We build the matrix A in the sparse format. We notice that there are different ways to use the
MATLAB function sparse to build a matrix in the sparse format. We choose the following
way: A = sparse (i, j,v,n,n). Here 1 and j are two vectors of equal length that contain
the (7, j) indexes of all the nonzero elements of A. The vector v is a vector of the same length
that contains the values of the nonzero elements A;;. Finally, the last two arguments indicate
the size of the matrix, here n x n. The complete matrix A is built diagonal by diagonal as
before, but by using the sparse commands:

S
.
DRI
oo o0
oo o0
o0 o0

S
.
.
e e oo
e e oo
e e oo
coo e
e e oo
ce oo

nz=78

Figure 1: Pattern of the banded matrix A with n = 20.

0 0
. oo .
2 e @ Bl 2 o .
e o o .
4 e e e B 4) .
e oo oo .
6 LR B 6 oo .
e oo . .
8 LRI 8 L) .
e o o .
10 LY 10 o .
oo oo .
12} oo o B 12) .
LRI oo .
14 o o 0 14 L) 0
LY o .
16 e oo B 16 oo .
LR ee o
18} oo o B 18 e o o
LRI o
20f o0 0000000000000 00 0 0 20 .
0 5 10 15 20 0 5 10 15 20

nz=74 nz =57

Figure 2: Patterns of the matrices L (left) and U (right) for the matrix A = LU with n = 20.

n = 1000;

As = sparse(1 : n, 1 n, 4 » ones(n, 1), n, n) + ..
sparse(1 : n -1, 2 : n, -1 » ones(n -1, 1), n, n) +
sparse(2 : n, 1 n-1, -2 x ones(n-1, 1), n, n) +
sparse(3 : n, 1 n-2, -1 xones(n-2, 1), n, n);

As(n, 1) = -1;

As(1, n) = 1;

A = diag(4 « ones(n, 1), 0) + ...

diag(-1 = ones(n -1, 1), 1) +
diag(-2 = ones(n -1, 1), - 1) +
diag(-1 = ones(n - 2, 1), - 2);

A(n, 1) =-1;

A(1l, n) =1;

whos A As

% Name Size Bytes Class Attributes

$ A 1000x1000 8000000 double

% As 1000x1000 72104 double sparse

J

The full matrix A with all the zeros memorized takes about 8 MB of memory, while the sparse
matrix As takes only about 72 kB. The lower memory requirements are achieved by storing
the matrix as a list of nonzero elements, where each element is stored as its index (7, j) and the

corresponding nonzero value A;;. All the other elements are assumed to be zero by default.

e) We recall that, for a symmetric and positive definite matrix A € R™"*", the Cholesky factor-

ization returns an upper triangular matrix R € R™*" such that RT R = A. We solve the linear
system by using the Cholesky factorization method as follows:

A=1[4-2-1; -2 7 -4; -1 -4 6 1;
x_ex = ones(3, 1); b =1A x x_ex;
R = chol(A);

y = forward_substitutions(R', b);
x = backward_substitutions(R, y);
err = norm(X — xX_ex)

% err =

% 9.1551e-16

The obtained solution matches the exact one up to machine precision.

Exercise IV (Theoretical)

a)

b)

We have det(A) = —3a® — 2a + 22. The values of « for which det(A) = 0 are oy = —Z and

a9 = %.
We obtain:
1 0 0 1 Q -1
L=| « 1 01, U=10 % —a? 1+«
6 —902—6a435
-1 357§a2 1 0 0 35732:;

If the matrix A is non-singular (for o # —% and g as deduced at point a)), the factorization
exists and is unique if the n — 1 pivot elements are non-zero. The values of the pivot elements

are aﬁ =1 and a% = % —a?. So, the LU factorization of the matrix A exists and is unique

for a e R\{-5, - /2,3, /21

1 5 1
For a = %, the matrix A reads A = %—5 3—35 1 |. We observe that the first
-1 /2 2
1 35
submatrix of the matrix A, i.e. A1 = " 353 , is singular, so that there does not
3 3

exist a unique LU factorization of the matrix A. Since the matrix A is non-singular, we

can still perform the LU factorization by introducing the permutation matrix P € R3*3 =
1 00

1 |, which permutes the second and third rows of the matrix A. We obtain: A :=

0

1 /% -1
5

PA = -1 /% 2 |. We perform the Gauss factorization A = LU of the matrix PA
35 35
R T

by repeating the procedure of point b); we obtain:

1 00 1 /% -1
10

L=| 1 : U=|o0 2y/2 1 |,
VEZ 01
3 0 0 144/2

where the pivot elements associated to the matrix A= PA are Ziﬁ =1 and ?ié?% =2,/33.

1 1 -1
d) We obtain R= | 0 2 24/ »
0 0 2

