EPFL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 6 — October 16, 2024

Solutions — Approximation of functions and data

Solution I (MATLAB)

a)

We use the following MATLAB commands to obtain the polynomial IT,, f(z) of degree n =9
interpolating f(z) at n + 1 uniformly spaced nodes over [a,b] = [0, 1] and the least-squares
approximating polynomial f,,(z) of degree m = 2. The results are reported in Figure 1 (left).

a=20; b=1;

g = Q@(x) 10 » x.72;

f = 0@(x) g(x) + 2 » rand(size(x))-1;
n = 9;

x_nodes = linspace(a,b,n+l);

y-nodes = f(x_nodes);

x_values = linspace(0,1,1001);

f values = f(x_values);

g-values = g(x_values);

Pinterp = polyfit(x_nodes, y-nodes, n);
Pinterp_values = polyval(Pinterp, x.values);

PLeastSquares = polyfit(x_.nodes, y.nodes, 2);
PLeastSquares_values = polyval(PLeastSquares, x_values);

plot (x-values, f_values, '—-g', x.values, g.-values, '-k',
x_values, Pinterp._values, '—-r', x_.values, PLeastSquares_values, '-b')
legend({'$f(x)$", '$g(x)$', '$\Pin f(x)s$', 's\tilde{f}.2(x)s'},...
'Interpreter', 'latex"');

J

As we can observe in Figure 1 (left), the interpolating polynomial Ilg f(x) is inadequate for
representing the behavior of the function g(x) on the interval I since it interpolates the
data points {(z;, f(x;))}, which take the noise ¢ into account. Conversely, the least-squares
approximating polynomial fa(x) is suitably describing the function g(x) on the interval I,
when constructed from the same data points. We observe that fa(x) is not interpolatory,
rather it represents the quadratic polynomial fo(z) = ag + a1x + asx? that minimizes the

Lagr. Polynomial interp. & Least-squares approx. Lagr. Polynomial interp. & Least-squares approx.

14— f(x) 40— f (=)
—yg(x) —yg(z)
12,_Unf(m> s — 1. f ()
— fax) — fa(x)

30r

251

=200

Figure 1: Polynomial IT,, f(x) of degree n = 9 interpolating f(z) (red) and least-squares approx-
imating polynomial f,,(x) of degree m = 2 (blue) for x € I = [0,1] (left) and extrapolated for
x € [0,2] (right); comparison with f(x) (green) and g(z) (black).

discrete interpolation error ®(ag,a1,a2) = > i (f(a:z) — (ap + ar1x; + agzc?))Q. In this case
we obtain ag = 0.5337, a; = —0.5480, and az = 10.1978 (see the variable PLeastSquares).
We deduce that fo(x) is a suitable approximation of the signal g(z) = 10z2.

We remark that the values obtained vary depending on the output of the MATLAB function
rand.

We extrapolate the interpolating polynomial Ilgf(z) and the least-squares approximating
polynomial fo(z) outside the interval I, specifically for x € [1,2]. We report the results in
Figure 1 (right) as obtained by the following commands.

x_values2 = linspace(0, 2, 1001);

g-values2 = g(x_values2);

Pinterp-values2 = polyval(Pinterp, x-values2);

PLeastSquares_values2 = polyval (PLeastSquares, x_.values2);

Pinterp_values2_x2 = Pinterp_.values2(end)

% Pinterp-values2._x2 =

% -3.3843e+06

PLeastSquares_values2_x2 = PLeastSquares_values2 (end)

% PLeastSquares_values2_x2 =

% 40.2288

plot (x_values, f_values, '—-g', x_values2, g.values2, '-k',
x_values2, Pinterp-values2, '-r', x_values2, PLeastSquares_values2, '-Db')

legend({'S$Sf(x)$', 'S$g(x)$', 's\Pin £(x)$', '$\tilde £.2(x)$'},
'"Interpreter', 'latex');

)

We observe that the interpolating polynomial Ilg f () is inadequate for representing the behav-
ior of the function g(x), and eventually f(z), outside the interval I, as confirmed by the value
assumed at x = 2, e.g. Ilgf(2) = —3.3843 - 105. Conversely, the least-squares approximating
polynomial fo(x) still adequately represents the function g(z) outside the interval I and allows
to extrapolate the values of the function g(z). For example, we obtain that fo(2) = 40.2288

(9(2) = 40).

Lagr. Polynomial interp. & Least-squares approx. Lagr. Polynomial interp. & Least-squares approx.

7@ ‘ ‘ sol[— 7@
—yg(x) —y(z)
ol —IL 7@ 35l —11. F(x)
— Fl=) — i)

30r

251

=200

Figure 2: Polynomial IT,, f(x) of degree n = 9 interpolating f(z) (red) and least-squares approx-
imating polynomial f,,(x) of degree m = 2 (blue) for x € I = [0,1] (left) and extrapolated for
x € [0,2] (right); comparison with f(x) (green) and g(z) (black) for a noise £(z) different than the
one considered in Figure 1.

c) We repeat points a) and b). We obtain the results reported in Figure 2. As we can observe,
the least-squares approximating polynomial still provides an adequate representation of the
function g(z) both inside and outside the interval I, with limited sensitivity with respect to the
new data points {(x;, f(;))};_,. On the other hand, the interpolating polynomial still does
not represent the function properly on I, and yields incorrect extrapolated values. Moreover,
the interpolating polynomial exhibits a strong sensitivity to the noise £(z) as confirmed by
comparing Figures 1 and 2.

Solution IT (MATLAB)

a) We use the following commands in MATLAB to obtain the piecewise linear interpolants
1# f () reported in Figure 3 for n = 2,7,12, and 22 sub-intervals.

f = Q(x) exp(-x."2 / 2);
a= -5 b =25;
x_.values = linspace(a, b, 1001);
f values = f(x_values);
n_vect = [2 7 12 22 27 32 1;
for n = n_vect
x_nodes = linspace(a, b, n + 1);
y-nodes = f(x_nodes);
ypl_values = interpl(x_nodes, y-nodes, x.-values);
figure
plot (x_values, f_values, '--k', x_values, ypl_values, '-k',
x_nodes, y-nodes, 'xk');
legend('"f(x)', '\Pi,lAH f(x)"', "(x_i,f(x_1i))");
pause (0.1)

Piecewise linear interp., H =(b-a)/n, n =2

0.8

0.6

0.4

0.2

---f(z)
— 10 f (=) |]
X (i, f(xi)

0pf=mmmmm=T o TS e
-5 0 5
T

n =
Piecewise linear interp., H =(b-a)/n, n =12
@)
I KA —IIi" £ (=) |]
g) X (@i, f(zi)

-5 0
T

n=12

Piecewise linear interp., H =(b-a)/n, n =7

@
—II{' /() ||
FE X (2. f(r:)

0.8

0.6

0.4

0.2

n="7
Piecewise linear interp., H =(b-a)/n, n =22
‘ - @
—II{ (=) |]
X (i, f(z0)

85O
w

n =22

Figure 3: Piecewise linear interpolants I1{ f(z) for n = 2,7,12, and 22 sub-intervals.

b) We report in Figure 4 the errors el () corresponding to I (f) vs. n.

n_vect = 2:32;
err_ypl = [];

for n = n_vect
x_nodes = linspace(a, b, n + 1);
y-nodes = f(x_nodes);
ypl_values = interpl(x_nodes, y-nodes, x_values);
err.ypl = [err.ypl, max(abs(f_values - ypl_-values)) 1;
end

We observe that the errors e (f) converge to zero as the number of sub-intervals n increases.

The oscillatory behavior is due to the positioning of the nodes for even and odd values of n.
In particular, we observe that, when n is odd, the maximum error e{{ (f) is obtained at = = 0
and it is larger than the error corresponding to n — 1 sub-intervals (in which case, a node is
placed at z = 0).

c) We use the following commands to obtain the spline s3(x) reported in Figure 5.

n=7;

x_nodes = linspace(a, b, n + 1);

y_-nodes = f(x_nodes);

ypl_values = interpl(x.nodes, y-nodes, x.-values);

s3_.values = spline(x_nodes, y-nodes, x.values);

figure;

plot (x-values, f_values, '--k', x_values, ypl-values, '-k',
x_values, s3_values, '-r', x_.nodes, y-nodes, 'xk');

J

We observe the smoothness of the spline s3(z), which is globally C?-continuous on the interval
I: s3 € C*(I) and s3 € C*™((wj, xi11)) for i =0,...,n — 1.

By using the following commands, we show in Figure 6 the errors es,(f) vs. the number of
sub-intervals n. We observe the convergence of the error to zero as n increases.

n_vect = 2:32;
err_s3 = [];
for n = n_vect
x_nodes = linspace(a, b, n + 1);
y-nodes = f(x_nodes);
s3_.values = spline(x_nodes, y-nodes, x.values);
err_s3 = [err_s3, max(abs(f_values - s3_values)) 1;
end
figure; semilogy(n_vect, err_s3, '-ok');

Solution III (Theoretical)

a) Let f € C%*(I), with I = [a,b]. The maximum error associated to the piecewise linear in-
terpolant TIH f(x) on I, i.e. e (f) := max,es !f(x) — T f(z)], can be bounded by an error

o Piecewise linear interp., error vs. n
10 T T

Figure 4: Errors el (f) vs. n.

Spline and Piecewise linear interp., H =(b-a)/n, n =7

o)
I —II f (=) ||
G \ —s3(x)
3 X (i, f(xi)
0.8

0.6

04

0.2

J
W
sol
W

Figure 5: Spline s3(x) for n = 7 sub-intervals.

o Spline, error vs. n

T T T T

Figure 6: Errors eg,(f) vs. n.

estimator e (f) := %Qmaxxg |f"(x)| such that el (f) < €f(f). Since we assume that
H = bfT“, where n is the number of sub-intervals, we can compute the minimum number
Nmin that ensures that e{l (f) < tol for some tolerance tol. We obtain n,,;, by imposing that

el (f) < el(f) < tol, i.e. by calculating the quantity (b — a) (ﬁ maxger \f”(m)])l/Q. Since
f(x) = lfz)g, =0, b =5, max,epz | f/(2)| = 2, and tol = 103, we obtain that ny, = 80.

Similarly to point a), we compute n,,;, as the quantity
Cy 1/4
b—a) | — Inax ,
(0= a) (55 maxl 1)
since the maximum error introduced in approximating f(x) with the spline s3(x) corresponds

to the choice 7 = 0 in the error bound. We obtain n;, = 63, since f®*(z) = (1-2;)5’
max,c(o,5) |f®(z)| = 24, and Cy = 1.

In order to ensure that the maximum error introduced in approximating f’(z) with the deriva-
tive of the spline s4(z) is inferior to the tolerance tol, we use the error bound with » = 1. We

calculate 7,5, as the quantity (b — a) (t% max,cy | f* (:L’)|)1/3. We obtain that n,,;, = 145.

The coefficients ag and a; of the least-squares approximating polynomial fl(x) =q9 +
are minimizers of the functional ®(ag, a1). Such coefficients can be obtained by imposing the
conditions: g (ap,a1) = 0 and 8 . (a0, a1) = 0. We observe that:

2 2
0P
Bag —(ag,a1) = —22 (z;) — (ap + a1x;)] = =2 (; fx;) —3ap — ay §$Z>

13 3
= =2 (6 — 3@0 — 2(11)

2 2 2
(gi(ao’al) = —QZmi[f(a:Z) (ap + ar1z;)] = —2 <Zz;$if(ﬂfi)—ao;xi—a1;l’?>

=0
= -2 §— §a — §a
- 6 2 0 4 1)
where we used the fact that 29 = 0, 21 = &, 22 = 1, f(z0) = 1, f(21) = , and f(z2) = 3.
Therefore, the coefficients ag and a; are obtained by solving the following hnear system:
13 3 3 3
—2 (6—3a0—2a1>:0 3ap + 0 =
, or
5 3 5 3 5)
-2 <6—2a0—4a1) =0 2a0 + 4a1 = &
. 35 1
We obtain ag = 5z and a1 = —3, so that fl() = 36 5%

We observe that the previous linear system can be written in the compact form Aa = g by
introducing a vector a € R? containing the coefficients ag and a;, the matrix A € R?*2, and

the vector g € R? such that:

A=

3 13

35 |
5 |7 &= s |
4 6

We observe that A = BTB and g = BTy, where the matrix B € R3>*? and the vector y € R?
are defined as B; j = (x;)’ for i =0,1,2 and j = 0,1 and y; = f(x;) for ¢ = 0,1, 2, which read:

NI

—
[an)
—

@
Il
—_
N[=
<
I
[TV I

Solution IV (MATLAB)

a) Given a 2m-periodic function f(x), f : [0,27] — R, and a set of n 4+ 1 equally spaced nodes

Tj = jf—fl for j =0,...,n, with z,, < 27, the trigonometric interpolant for n even is defined
as:
n/2
Lf(@) = Y ae*,
k=—n/2

for some coefficients ¢, € C with 4 the imaginary unit and e*** = [cos(k z) + i sin(kx)]. We
remark that I, f(z;) = f(x;) for all j =0,...,n.

The MATLAB function interpft computes the n 4+ 1 unknown coefficients ¢; by assuming
that the interpolation nodes z; are uniformly distributed in [0, 27) and provides the values of
the trigonometric interpolant I; f(z) corresponding to a set of points in [0, 27) whose number
is specified in input.

We are interested in constructing the trigonometric interpolant I,V (t) of the data points
{(t;,Vj)};_y, where the n +1 = 11 nodes t; = zj5 are uniformly spaced in the period, as
required by the MATLAB function interpft. For the purposes of graphical representation,
we evaluate the trigonometric interpolant I,V (t) at m (n + 1) equally spaced points between
[0,0.77) s, with m “sufficiently” large, e.g. m = 100.

% Data couples

t3 =1 0 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.707];
Vj = [194 184 177 156 142 160 168 166 170 178 187];
% Trigonometric interpolation

n = length(tj) - 1; % n=10, n+l = 11

m = 100;

t_values = linspace(0, 0.77, m*(n+l));

V_values = interpft(Vj, m*(n+l));

plot (tj, Vi, 'o', t_values, V.wvalues, 'r——');

% Ejection fraction

Ef = (max(V_.values) - min(V_.values)) / max(V_values)
$ Ef =

% 0.2714

190

180

170

160

150
O Data

— — — Uncorrected

Corrected
140t i i i i i T T 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 7: Trigonometric interpolants I;V (t) and I,V (¢) for t € [0,0.77) s.

The trigonometric interpolant I;V(¢) is indeed periodic, as we can observe in Figure 7. The
ejection fraction assumes the value Ey = 0.2714.

b) We use the following commands:

o

% Correction of data V.7

Vjc = Vj;

Vic(7+1) = (Vj(6+1l) + Vi(8+1l)) / 2; % (Note: MATLAB index starts from 1)
% Trigonometric interpolation

Vc_values = interpft(Vijc, m* (n+l));

hold on; plot(t_values, Vc.values, 'k-');

legend('Data', 'Uncorrected', 'Corrected', 'Location’', 'SouthEast"')
% Ejection fraction (post-correction)

Efc = (max(Vc_.values) — min(Vc_values)) / max(Vc_values)
$ Efc =
% 0.2720

J

It can be observed in Figure 7 that the modification at one interpolation node t7 does not

change the interpolant I;V(¢) much, as long as we stay away from the “bad” node, so that
the corrected estimated ejection fraction Ey = 0.2720 remains very similar to Ey.

Solution V (Theoretical)

Define the vector r(a) =y — Ba € R™. The least square solution a € R™ minimizes the quantity
®(a) defined as
®(a) = [lr(a)|® = |ly — Ball*,

or alternatively as

m
@(a):zr?, Ti:yz‘—ZBikak, 1=1,...,n.
J k=1

Since ®(a) is a convex C! function, it is minimized when its gradient is zero. So, we proceed by

computing its gradient:
0P - 87’1'
— =2) r— =1,...,m.
da; Z s J

Since 3;”? = —B;;, we can express the above equations as
J

0P n m ‘
%:_22@1‘—2&1@%)3@, j=1,...,m.
/ i=1 k=1

=0,7=1,...,m, we have the relation

Finally, by imposing ggﬁ_

n m
2Z<yi_ZBikak>Bij:0, j=1,....,m,
=1 k=1

from which

n m n
> By Birik =Y Byy, j=1,...,m.
=1 k=1 i=1

10

