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Solutions – Approximation of functions and data

Solution I (MATLAB)

a) We use the following MATLAB commands to obtain the polynomial Πnf(x) of degree n = 9
interpolating f(x) at n + 1 uniformly spaced nodes over [a, b] = [0, 1] and the least-squares
approximating polynomial f̃m(x) of degree m = 2. The results are reported in Figure 1 (left).

�
a = 0; b = 1;
g = @(x) 10 * x.ˆ2;
f = @(x) g(x) + 2 * rand(size(x))−1;
n = 9;
x nodes = linspace(a,b,n+1);
y nodes = f(x nodes);

x values = linspace(0,1,1001);
f values = f(x values);
g values = g(x values);

Pinterp = polyfit( x nodes, y nodes, n );
Pinterp values = polyval( Pinterp, x values );

PLeastSquares = polyfit( x nodes, y nodes, 2 );
PLeastSquares values = polyval( PLeastSquares, x values );

plot( x values, f values, '−g', x values, g values, '−k', ...
x values, Pinterp values, '−r', x values, PLeastSquares values, '−b' )

legend( {'$f(x)$', '$g(x)$', '$\Pi n f(x)$', '$\tilde{f} 2(x)$'},...
'Interpreter','latex');� �

As we can observe in Figure 1 (left), the interpolating polynomial Π9f(x) is inadequate for
representing the behavior of the function g(x) on the interval I since it interpolates the
data points {(xi, f(xi))}, which take the noise ε into account. Conversely, the least-squares
approximating polynomial f̃2(x) is suitably describing the function g(x) on the interval I,
when constructed from the same data points. We observe that f̃2(x) is not interpolatory,
rather it represents the quadratic polynomial f̃2(x) = a0 + a1x + a2x

2 that minimizes the
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Figure 1: Polynomial Πnf(x) of degree n = 9 interpolating f(x) (red) and least-squares approx-
imating polynomial f̃m(x) of degree m = 2 (blue) for x ∈ I = [0, 1] (left) and extrapolated for
x ∈ [0, 2] (right); comparison with f(x) (green) and g(x) (black).

discrete interpolation error Φ(a0, a1, a2) =
∑n

i=0

(
f(xi)− (a0 + a1xi + a2x

2
i )
)2
. In this case

we obtain a0 = 0.5337, a1 = −0.5480, and a2 = 10.1978 (see the variable PLeastSquares).
We deduce that f̃2(x) is a suitable approximation of the signal g(x) = 10x2.

We remark that the values obtained vary depending on the output of the MATLAB function
rand.

b) We extrapolate the interpolating polynomial Π9f(x) and the least-squares approximating
polynomial f̃2(x) outside the interval I, specifically for x ∈ [1, 2]. We report the results in
Figure 1 (right) as obtained by the following commands.

�
x values2 = linspace( 0, 2, 1001 );
g values2 = g(x values2);
Pinterp values2 = polyval( Pinterp, x values2 );
PLeastSquares values2 = polyval( PLeastSquares, x values2 );
Pinterp values2 x2 = Pinterp values2( end )
% Pinterp values2 x2 =
% −3.3843e+06
PLeastSquares values2 x2 = PLeastSquares values2(end)
% PLeastSquares values2 x2 =
% 40.2288
plot( x values, f values, '−g', x values2, g values2, '−k', ...

x values2, Pinterp values2, '−r', x values2, PLeastSquares values2, '−b' )
legend( {'$f(x)$', '$g(x)$', '$\Pi n f(x)$', '$\tilde f 2(x)$'}, ...

'Interpreter','latex');� �
We observe that the interpolating polynomial Π9f(x) is inadequate for representing the behav-
ior of the function g(x), and eventually f(x), outside the interval I, as confirmed by the value
assumed at x = 2, e.g. Π9f(2) = −3.3843 · 106. Conversely, the least-squares approximating
polynomial f̃2(x) still adequately represents the function g(x) outside the interval I and allows
to extrapolate the values of the function g(x). For example, we obtain that f̃2(2) = 40.2288
(g(2) = 40).
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Figure 2: Polynomial Πnf(x) of degree n = 9 interpolating f(x) (red) and least-squares approx-
imating polynomial f̃m(x) of degree m = 2 (blue) for x ∈ I = [0, 1] (left) and extrapolated for
x ∈ [0, 2] (right); comparison with f(x) (green) and g(x) (black) for a noise ε(x) different than the
one considered in Figure 1.

c) We repeat points a) and b). We obtain the results reported in Figure 2. As we can observe,
the least-squares approximating polynomial still provides an adequate representation of the
function g(x) both inside and outside the interval I, with limited sensitivity with respect to the
new data points {(xi, f(xi))}ni=0. On the other hand, the interpolating polynomial still does
not represent the function properly on I, and yields incorrect extrapolated values. Moreover,
the interpolating polynomial exhibits a strong sensitivity to the noise ε(x) as confirmed by
comparing Figures 1 and 2.

Solution II (MATLAB)

a) We use the following commands in MATLAB to obtain the piecewise linear interpolants
ΠH

1 f(x) reported in Figure 3 for n = 2, 7, 12, and 22 sub-intervals.

�
f = @(x) exp(−x.ˆ2 / 2);
a = −5; b = 5;
x values = linspace( a, b, 1001 );
f values = f( x values );
n vect = [2 7 12 22 27 32 ];
for n = n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
yp1 values = interp1( x nodes, y nodes, x values );
figure
plot( x values, f values, '−−k', x values, yp1 values, '−k', ...

x nodes, y nodes, 'xk');
legend( 'f(x)', '\Pi 1ˆH f(x)', '(x i,f(x i))');
pause(0.1)� �
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b) We report in Figure 4 the errors eH1 (f) corresponding to ΠH
1 (f) vs. n.

�
n vect = 2:32;
err yp1 = [];
for n = n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
yp1 values = interp1( x nodes, y nodes, x values );
err yp1 = [ err yp1, max( abs( f values − yp1 values ) ) ];

end� �
We observe that the errors eH1 (f) converge to zero as the number of sub-intervals n increases.
The oscillatory behavior is due to the positioning of the nodes for even and odd values of n.
In particular, we observe that, when n is odd, the maximum error eH1 (f) is obtained at x = 0
and it is larger than the error corresponding to n − 1 sub-intervals (in which case, a node is
placed at x = 0).

c) We use the following commands to obtain the spline s3(x) reported in Figure 5.

�
n = 7;
x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
yp1 values = interp1( x nodes, y nodes, x values );
s3 values = spline( x nodes, y nodes, x values );
figure;
plot( x values, f values, '−−k', x values, yp1 values, '−k', ...

x values, s3 values, '−r', x nodes, y nodes, 'xk' );� �
We observe the smoothness of the spline s3(x), which is globally C2-continuous on the interval
I: s3 ∈ C2(I) and s3 ∈ C∞((xi, xi+1)) for i = 0, . . . , n− 1.

By using the following commands, we show in Figure 6 the errors es3(f) vs. the number of
sub-intervals n. We observe the convergence of the error to zero as n increases.

�
n vect = 2:32;
err s3 = [];
for n = n vect

x nodes = linspace( a, b, n + 1 );
y nodes = f( x nodes );
s3 values = spline( x nodes, y nodes, x values );
err s3 = [ err s3, max( abs( f values − s3 values ) ) ];

end
figure; semilogy( n vect, err s3, '−ok' );� �

Solution III (Theoretical)

a) Let f ∈ C2(I), with I = [a, b]. The maximum error associated to the piecewise linear in-
terpolant ΠH

1 f(x) on I, i.e. eH1 (f) := maxx∈I
∣∣f(x)−ΠH

1 f(x)
∣∣, can be bounded by an error
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estimator ẽH1 (f) := H2

8 maxx∈I |f ′′(x)| such that eH1 (f) ≤ ẽH1 (f). Since we assume that

H = b−a
n , where n is the number of sub-intervals, we can compute the minimum number

nmin that ensures that eH1 (f) < tol for some tolerance tol. We obtain nmin by imposing that

eH1 (f) ≤ ẽH1 (f) < tol, i.e. by calculating the quantity (b − a)
(

1
8 tol maxx∈I |f ′′(x)|

)1/2
. Since

f ′′(x) = 2
(1+x)3

, a = 0, b = 5, maxx∈[0,5] |f ′′(x)| = 2, and tol = 10−3, we obtain that nmin = 80.

b) Similarly to point a), we compute nmin as the quantity

(b− a)

(
C0

tol
max
x∈I

|f (4)(x)|
)1/4

,

since the maximum error introduced in approximating f(x) with the spline s3(x) corresponds
to the choice r = 0 in the error bound. We obtain nmin = 63, since f (4)(x) = 24

(1+x)5
,

maxx∈[0,5] |f (4)(x)| = 24, and C0 = 1.

In order to ensure that the maximum error introduced in approximating f ′(x) with the deriva-
tive of the spline s′3(x) is inferior to the tolerance tol, we use the error bound with r = 1. We

calculate nmin as the quantity (b− a)
(
C1
tol maxx∈I |f (4)(x)|

)1/3
. We obtain that nmin = 145.

c) The coefficients a0 and a1 of the least-squares approximating polynomial f̃1(x) = a0 + a1x
are minimizers of the functional Φ(a0, a1). Such coefficients can be obtained by imposing the
conditions: ∂Φ

∂a0
(a0, a1) = 0 and ∂Φ

∂a1
(a0, a1) = 0. We observe that:

∂Φ

∂a0
(a0, a1) = −2

2∑

i=0

[f(xi)− (a0 + a1xi)] = −2

(
2∑

i=0

f(xi)− 3a0 − a1

2∑

i=0

xi

)

= −2

(
13

6
− 3a0 −

3

2
a1

)
,

∂Φ

∂a1
(a0, a1) = −2

2∑

i=0

xi[f(xi)− (a0 + a1xi)] = −2

(
2∑

i=0

xif(xi)− a0

2∑

i=0

xi − a1

2∑

i=0

x2i

)

= −2

(
5

6
− 3

2
a0 −

5

4
a1

)
,

where we used the fact that x0 = 0, x1 = 1
2 , x2 = 1, f(x0) = 1, f(x1) =

2
3 , and f(x2) =

1
2 .

Therefore, the coefficients a0 and a1 are obtained by solving the following linear system:





−2

(
13

6
− 3a0 −

3

2
a1

)
= 0

−2

(
5

6
− 3

2
a0 −

5

4
a1

)
= 0

, or





3a0 +
3

2
a1 =

13

6

3

2
a0 +

5

4
a1 =

5

6

.

We obtain a0 =
35
36 and a1 = −1

2 , so that f̃1(x) =
35

36
− 1

2
x.

We observe that the previous linear system can be written in the compact form Aa = g by
introducing a vector a ∈ R2 containing the coefficients a0 and a1, the matrix A ∈ R2×2, and
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the vector g ∈ R2 such that:

A =

[
3 3

2

3
2

5
4

]
, g =

[ 13
6

5
6

]
.

We observe that A = BTB and g = BTy, where the matrix B ∈ R3×2 and the vector y ∈ R3

are defined as Bi,j = (xi)
j for i = 0, 1, 2 and j = 0, 1 and yi = f(xi) for i = 0, 1, 2, which read:

B =




1 0

1 1
2

1 1


 , y =




1

2
3

1
2


 .

Solution IV (MATLAB)

a) Given a 2π-periodic function f(x), f : [0, 2π] → R, and a set of n + 1 equally spaced nodes
xj = j 2π

n+1 for j = 0, . . . , n, with xn < 2π, the trigonometric interpolant for n even is defined
as:

Itf(x) =

n/2∑

k=−n/2

ck e
ikx,

for some coefficients ck ∈ C with i the imaginary unit and eikx = [cos(k x) + i sin(k x)]. We
remark that Itf(xj) = f(xj) for all j = 0, . . . , n.

The MATLAB function interpft computes the n+ 1 unknown coefficients ck by assuming
that the interpolation nodes xj are uniformly distributed in [0, 2π) and provides the values of
the trigonometric interpolant Itf(x) corresponding to a set of points in [0, 2π) whose number
is specified in input.

We are interested in constructing the trigonometric interpolant ItV (t) of the data points
{(tj , Vj)}nj=0, where the n + 1 = 11 nodes tj = xj

T
2π are uniformly spaced in the period, as

required by the MATLAB function interpft. For the purposes of graphical representation,
we evaluate the trigonometric interpolant ItV (t) at m (n+ 1) equally spaced points between
[0, 0.77) s, with m “sufficiently” large, e.g. m = 100.

�
% Data couples
tj = [ 0 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.70];
Vj = [ 194 184 177 156 142 160 168 166 170 178 187];
% Trigonometric interpolation
n = length( tj ) − 1; % n=10, n+1 = 11
m = 100;
t values = linspace( 0, 0.77, m*(n+1) );
V values = interpft( Vj, m*(n+1) );
plot( tj, Vj,'o', t values, V values, 'r−−' );
% Ejection fraction
Ef = ( max( V values ) − min( V values ) ) / max( V values )
% Ef =
% 0.2714� �
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Figure 7: Trigonometric interpolants ItV (t) and ItṼ (t) for t ∈ [0, 0.77) s.

The trigonometric interpolant ItV (t) is indeed periodic, as we can observe in Figure 7. The
ejection fraction assumes the value Ef = 0.2714.

b) We use the following commands:

�
% Correction of data V 7
Vjc = Vj;
Vjc(7+1) = ( Vj(6+1) + Vj(8+1) ) / 2; %(Note: MATLAB index starts from 1)
% Trigonometric interpolation
Vc values = interpft( Vjc, m*(n+1) );
hold on; plot( t values, Vc values, 'k−' );
legend('Data','Uncorrected','Corrected','Location','SouthEast')
% Ejection fraction (post−correction)
Efc = ( max( Vc values ) − min( Vc values ) ) / max( Vc values )
% Efc =
% 0.2720� �
It can be observed in Figure 7 that the modification at one interpolation node t7 does not
change the interpolant ItṼ (t) much, as long as we stay away from the “bad” node, so that
the corrected estimated ejection fraction Ẽf = 0.2720 remains very similar to Ef .

Solution V (Theoretical)

Define the vector r(a) = y − Ba ∈ Rn. The least square solution ã ∈ Rm minimizes the quantity
Φ(a) defined as

Φ(a) = ∥r(a)∥2 = ∥y −Ba∥2,

or alternatively as

Φ(a) =

n∑

i=1

r2i , ri = yi −
m∑

k=1

Bikak, i = 1, . . . , n.
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Since Φ(a) is a convex C1 function, it is minimized when its gradient is zero. So, we proceed by
computing its gradient:

∂Φ

∂aj
= 2

n∑

i=1

ri
∂ri
∂aj

, j = 1, . . . ,m.

Since ∂ri
∂aj

= −Bij , we can express the above equations as

∂Φ

∂aj
= −2

n∑

i=1

(
yi −

m∑

k=1

Bikak

)
Bij , j = 1, . . . ,m.

Finally, by imposing ∂Φ
∂ãj

= 0, j = 1, . . . ,m , we have the relation

2
n∑

i=1

(
yi −

m∑

k=1

Bikãk

)
Bij = 0, j = 1, . . . ,m,

from which
n∑

i=1

Bij

m∑

k=1

Bikãk =
n∑

i=1

Bijyi, j = 1, . . . ,m.
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