
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 3 – September 25, 2024

Solutions – Nonlinear equations: Newton method

Solution I (MATLAB)

We consider the following implementation of the MATLAB function newton.m:

�
function [xvect, resvect, nit] = newton(fun, dfun, x0, tol, nmax)
% NEWTON Find a zero of a nonlinear scalar function.
% [XVECT] = NEWTON(FUN,DFUN,X0,TOL,NMAX) finds a zero of the differentiable
% function FUN using the Newton method and returns a vector XVECT containing
% the successive approximations of the zero (iterates). DFUN is the derivative of FUN.
% FUN and DFUN accept real scalar input x and return a real scalar value;
% FUN and DFUN can also be inline objects. X0 is the initial guess.
% TOL is the tolerance on error allowed and NMAX the maximum number of iterations.
% The stopping criterion based on the difference of successive iterates is used.
% If the search fails a warning message is displayed.
%
% [XVECT,RESVECT,NIT] = NEWTON(FUN,DFUN,X0,TOL,NMAX) also returns the vector
% RESVECT of residual evaluations for each iterate, and NIT the number of iterations.
% Note: the length of the vectors is equal to (NIT + 1).

nit = 0;
xvect(nit+1) = x0;
resvect(nit+1) = fun(x0);
err estim = tol + 1;
while (err estim ≥ tol && nit < nmax)

xvect(nit+2) = xvect(nit+1) − fun(xvect(nit+1)) / dfun(xvect(nit+1));
resvect(nit+2) = fun(xvect(nit+2));
err estim = abs(xvect(nit+2) − xvect(nit+1)); % diff. successive iterates
nit = nit + 1;

end

if err estim ≥ tol
warning(['Newton method stopped without converging to the desired tolerance, '...

'the maximum number of iterations was reached.']);
end

return� �
1

Notice that, in this implementation of the function newton, the output variable xvect stores all the
approximate solutions, starting from x(0), with the approximate zero in the last entry of xvect.
Similarly, resvect stores the residuals. The length of the vectors xvect and resvect is nit+1.

a) We consider the following MATLAB commands:

�
fun = @(x) sin(2*x) + x;
dfun = @(x) 2*cos(2*x) + 1;
x0 = 0.7; tol = 1e−5; nmax = 50;
[xvect, resvect, nit] = newton(fun, dfun, x0, tol, nmax);
alpha = 0;
err = abs(xvect(end) − alpha)
nit
% err =
%
% 3.956702654861650e−19
%
% nit =
%
% 5� �
We obtain nc = 5, and the error e(nc) = |x(nc) − α| = 3.9567 · 10−19 is negligible. Instead, by
setting tol = 10−2, we obtain nc = 4 and e(nc) = 7.6357 · 10−7.

b) We verify that f(x) ∈ C2(Iα) in a neighborhood Iα of α (in fact, f(x) ∈ C∞(R)) and
f ′(α) = 3 ̸= 0, so that the zero α = 0 is simple. Therefore, we expect convergence with
order 2, if x(0) is chosen sufficiently close to α; specifically, we have:

lim
n→∞

x(n+1) − α

(x(n) − α)2
=

f ′′(α)

2f ′(α)
= 0,

with the asymptotic convergence factor f ′′(α)
2f ′(α) = 0 since f ′′(α) = f ′′(0) = 0.

c) The convergence order can be checked using the semi-logarithmic plot of the error e(n) =
|x(n) − α| vs. n, with the following commands:

�
x0 = 0.7; tol = 1e−12; nmax = 6;
[xvect, resvect, nit] = newton(fun, dfun, x0, tol, nmax);
errvect = abs(xvect − alpha);
nvect = 0 : nmax;
bnvect = 2.ˆ(− nvect.ˆ2);
semilogy(nvect, errvect, '−ko', nvect, bnvect, '−−k'); grid on;
xlabel('n'); ylabel('err');
legend('err', 'b n=2ˆ{−n}', 'Location', 'southWest');� �
If the convergence were of order 1, the error would decay as a straight line, similar to the
one representing bn. In this case, much faster convergence is observed. So we verify that the
Newton method indeed converges with order higher than 1.

2

0 1 2 3 4 5 6

n

10
-20

10
-15

10
-10

10
-5

10
0

e
rr

err

b
n

=2
-n

d) To implement the stopping criterion based on the absolute residual in the function newton, it
suffices to replace line

�
err estim = tol + 1;� �
with

�
err estim = abs(resvect(nit+1));� �
and line

�
err estim = abs(xvect(nit+2) − xvect(nit+1)); % diff. successive iterates� �
with

�
err estim = abs(resvect(nit+2)); % absolute residual� �
The Newton method with the stopping criterion based on the absolute residual is implemented
in the MATLAB function newton residual (see file newton residual.m).

We use the function newton residual to obtain, e.g. for β = 1:

�
beta = 1e0;
fun = @(x) exp(beta * x) − 1;
dfun = @(x) beta * exp(beta * x);
x0 = 0.1; tol = 1e−7; nmax = 150;
[xvect, resvect, nit] = newton residual(fun, dfun, x0, tol, nmax);
err = abs(xvect(end) − alpha)
res = abs(resvect(end))
nit
% err =
%
% 6.822793885920731e−11

3

%
% res =
%
% 6.822786779991930e−11
%
% nit =
%
% 3� �
For β = 1, we obtain convergence to α = 0 in nc = 3 iterations, with the error e(nc) =
6.8228 · 10−11 and the residual |r(nc)| = 6.8228 · 10−11. For β = 10−3, we obtain nc = 1,
e(nc) = 4.9998 · 10−6 and |r(nc)| = 4.9998 · 10−9. For β = 103, we obtain nc = 104, e(nc) =
1.2192 · 10−13 and |r(nc)| = 1.2192 · 10−10.

Since |f ′(x)| ≃ β for x in a neighborhood of α = 0, the stopping criterion based on the
residual is satisfactory only for β = 1; when β = 103 and β = 10−3, we have that |f ′(x)| ≫ 1
and |f ′(x)| ≪ 1, respectively, and the criterion is not satisfactory. Indeed, as we verified
with MATLAB, the error e(nc) is overestimated by the residual r(nc) for β = 103 and more
iterations than necessary are required. On the other hand, for β = 10−3, the error e(nc) is
underestimated by the residual r(nc), and the error is larger than predicted by the stopping
criterion on the residual. We notice that e(nc) ≃ ẽ(nc) = |r(nc)|/|f ′(α)| = |r(nc)|/β for a zero
of multiplicity one as in this case, where ẽ(nc) represents the error estimator at the converged
iteration.

Solution II (MATLAB)

a) The only zero in the interval (−π/2, π/2) is α = 0. We can verify that f(x) ∈ C∞(R) and
the first m − 1 derivatives of f(x) at α are all zero, f(0) = f ′(0) = . . . = fm−1(0) = 0, but
fm(0) = m! ̸= 0. Therefore, α = 0 is a zero of multiplicity m. This means that, if m ≥ 2, the
Newton method converges only with order 1 (linear convergence), provided that the initial
guess x(0) is sufficiently close to α. The order of convergence 2 (quadratic convergence) is
expected only for the case m = 1, where the zero α is simple (f ′(α) = 1 ̸= 0 for m = 1).

b) By repeating the MATLAB commands reported in Exercise 1), point a), we obtain that the
number of iterations required for convergence is nc = 4 for the case m = 1, nc = 26 for the
case m = 2, and nc = 42 for the case m = 3.

c) Similarly to Exercise 1, point c), we see that only in the case m = 1 (α is simple) we can
observe convergence of order higher than 1, as depicted in the following figure. The other two
cases (m = 2 and m = 3) exhibit order of convergence 1 (linear convergence) as discussed
in point a), due to the multiplicity m ≥ 2 of the zero α. We use the following MATLAB
commands:

�
x0 = pi/6; tol = 1e−8; nmax = 50;
alpha = 0;
errvect = {}; nvect={};
for m = 1:3

fun = @(x) (sin(x)).ˆm;
dfun = @(x) m * (sin(x)).ˆ(m−1) .* cos(x);
[xvect, resvect, nit] = newton(fun, dfun, x0, tol, nmax);

4

errvect{ m } = abs(xvect − alpha);
nvect{ m } = 0:nit;

end
semilogy(nvect{1}, errvect{1}, '−ko', nvect{2}, errvect{2}, '−ks', ...

nvect{3}, errvect{3}, '−k*'); grid on; axis([−1 40 1e−14 1])
xlabel('n'); ylabel('err'); legend('m=1', 'm=2', 'm=3');� �

0 5 10 15 20 25 30 35 40

n

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

e
rr

m=1

m=2

m=3

d) In order to recover quadratic convergence, the iteration of the Newton method for a zero of
multiplicity m ≥ 1 should be modified as:

x(n+1) = x(n) −m
f(x(n))

f ′(x(n))
for all n ≥ 0.

The function newton modified (see the file newton modified.m) can be obtained from the
function newton by replacing line

�
function [xvect, resvect, nit] = newton(f, df, x0, tol, nmax)� �
with

�
function [xvect, resvect, nit] = newton modified(fun, dfun, x0, tol, nmax, m)� �
and line

�
xvect(nit+2) = xvect(nit+1) − fun(xvect(nit+1)) / dfun(xvect(nit+1));� �
with

�
xvect(nit+2) = xvect(nit+1) − m * fun(xvect(nit+1)) / dfun(xvect(nit+1));� �

5

where m represents the multiplicity of the zero α.

e) The generic iteration of the modified Newton method for f(x) reads:

x(n+1) = x(n) −m
sin(x(n))m

m sin(x(n))m−1 cos(x(n))
= x(n) − sin(x(n))

cos(x(n))
for all n ≥ 0 andm = 1, 2, . . .

so that the iterations produce identical results in all three cases and the convergence is of
order 2 as depicted in the following figure (use MATLAB commands similarly to point c)).

0 0.5 1 1.5 2 2.5 3 3.5 4

n

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

e
rr

m=1

m=2

m=3

Solution III (MATLAB)

a) The plots of the polynomial and the tangent lines are obtained with the following commands:

�
p = @(x) −3/8 * x.ˆ3 + 5/4 * x.ˆ2 + x/2 − 1;
dp = @(x) −9/8 * x.ˆ2 + 5/2 * x + 1/2;
t 0 = @(x) dp(0) * x + p(0); % tangent line in x=0
t 1 = @(x) dp(2) * (x−2) + p(2); % tangent in x=2
xv = linspace(−1,3,1001);
plot(xv, p(xv), '−k', xv, t 0(xv), '−−k', xv, t 1(xv), '−−k');� �

6

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

b) The method converges to the zero α ≃ 0.7955 in 8 iterations for the prescribed tolerance:

�
x0 = 1e−3; tol = 1e−8; nmax = 20;
[xvect, resvect, nit] = newton(p, dp, x0, tol, nmax);
xvect(nit+1)
nit
% ans =
%
% 0.7955
%
% nit =
%
% 8� �

c) We use commands similar to point b). For x(0) = 0 the Newton method reaches the max-
imum number of iterations without converging. Indeed, by construction and as highlighted
graphically in point a), the Newton method produces the iterations:

x(1) = x(0) − f(x(0))

f ′(x(0))
= 0− −1

1
2

= 2,

x(2) = x(1) − f(x(1))

f ′(x(1))
= 2− 2 = 0,

for x(0) = 0, so that x(n) = x(n+2) for all n, i.e. the method gets stuck in a 2-cycle and never
converges. We verify this by looking at the approximate zeros stored in the variable xvect:

�
% xvect =

7

%
% 0 2 0 2 0 2 0 2 0 2 0 ...� �
By setting x(0) = −10−3, we can recover convergence in 12 iterations, but the zero α2 ≃ 3.4965
does not belong to the interval (0, 2), indeed the polynomial p(x) has more than one root.

The first few iterations are:{
x(n)

}∞

n=1
= {−0.001, 2.01001,−0.0414, 2.5399, 7.9100, 5.8262, . . .} .

We conclude that, depending on the properties of the function f(x), including the number of
zeros, very small changes to the initial value x(0) can cause the Newton method to converge
to completely different zeros, or even to not converge. This fact stresses the importance of
selecting an initial guess x(0) sufficiently close to the zero α.

Solution IV (MATLAB)

We consider the following implementation of the function newtonsys:

�
function [x, res, nit] = newtonsys(F, J, x0, tol, nmax)
% NEWTONSYS Find the zeros of a system of nonlinear equations.
% [X] = NEWTONSYS(F,J,X0,TOL,NMAX) find the zero X of the
% continuous and differentiable system of functions F nearest to X0 using the
% Newton method. J is a function which takes X and returns the Jacobian matrix.
% X0 is a column vector; F returns a column vector and J a square matrix.
% The stopping criterion is based on the difference (norm) of successive
% iterates.
% If the search fails a warning message is displayed.
%
% [X,RES,NITER] = NEWTONSYS(F,J,X0,TOL,NMAX) returns the value of the
% residual RES in X and the number of iterations NITER required for computing X.
% Note: only the final iterate is stored in X; similarly for RES.
%

nit = 0;
x = x0;
res = F(x0);
err estim = tol + 1;
while (err estim ≥ tol && nit < nmax)

xold = x;
x = xold − J(xold) \ F(xold);
res = F(x);
err estim = norm(x − xold); % diff. successive iterates
nit = nit + 1;

end

if err estim ≥ tol
warning(['Newton method stopped without converging to the desired tolerance, '...

'the maximum number of iterations was reached.']);
end

return� �
We choose as initial datum x(0) = (1.5,−2)T . The method converges in nc = 25 iterations with an
error e(nc) =

∥∥x(nc) −α
∥∥
2
= 6.5108 · 10−6.

8

�
F = @(x) [exp(x(1).ˆ2 + x(2).ˆ2) − 1; exp(x(1).ˆ2 − x(2).ˆ2) − 1];
J = @(x) [2 * x(1) * exp(x(1).ˆ2 + x(2).ˆ2), 2 * x(2) * exp(x(1).ˆ2 + x(2).ˆ2);
2 * x(1) * exp(x(1).ˆ2 − x(2).ˆ2), −2 * x(2) * exp(x(1).ˆ2 − x(2).ˆ2)];
alpha = [0; 0];
x0 = [4; 4]; tol = 1e−5;
nmax = 100;
[x, res, nit] = newtonsys(F, J, x0, tol, nmax);
err = norm(x − alpha)
nit
% err =
%
% 6.5108e−06
%
% nit =
%
% 25

a=linspace(−2,2,100);
[X,Y]=meshgrid(a,a);

figure
contour(X,Y,(X.ˆ2 + Y.ˆ2) − 1,20); hold on;� �
By choosing x(0) = (4, 4)T we need nc = 50 iterations to converge to the prescribed tolerance, with
error e(nc) =

∥∥x(nc) −α
∥∥
2
= 7.4693 · 10−6.

In the figures below, we plot the logarithmic contours of ∥F (x)∥2 in a neighborhood of the zero
α = (0, 0)T and the sequence of approximate solutions starting from x(0) = (1.5,−2)T and x(0) =
(4, 4)T . The function ∥F (x)∥2 grows exponentially as we move away from α. As a consequence, the
magnitude of the n-th Newton correction term, i.e.

∥∥JF (x(n))−1F (x)
∥∥
2
, is small for

∥∥x(n)
∥∥
2
≫ 1.

For the initial guess x(0) = (4, 4)T we need nc = 50 iterations to reach a solution that satisfies the
stopping tolerance. We verify that this is due to the stagnation of the method during the initial
iterations.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

9

