
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 2 – September 18, 2024

Solutions – Nonlinear equations: bisection and Newton
methods

Solution I (MATLAB)

a) We consider the following implementation of the MATLAB function bisection.m:

�
function [xvect,esterrvect,resvect,nit] = bisection(fun,a,b,tol,nmax)
% BISECTION Find a zero of a nonlinear scalar function inside an interval.
% XVECT=BISECTION(FUN,A,B,TOL,NMAX) finds a zero of the continuous
% function FUN in the interval [A,B] using the bisection method and returns
% a vector XVECT containing the successive approximations of the zero (iterates).
% FUN accepts real scalar input x and returns a real scalar value;
% FUN can also be an inline object.
% TOL is the tolerance on error allowed and NMAX the maximum number of iterations.
% If the search fails an error message is displayed.
%
% [XVECT,ESTERRVECT,RESVECT,NIT]=BISECTION(FUN,...) also returns the vector
% ESTERRVECT of error estimators for each iterate, the vector RESVECT of residual
% evaluations for each iterate, and NIT the number of iterations.
% Note: the length of the vectors is equal to (NIT + 1).
%

if a ≥ b
error(' b must be greater than a (b > a)');

end

% evaluate f at the endpoints
fa = fun(a);
fb = fun(b);
if sign(fa) * sign(fb) > 0

error(' The sign of FUN at the extrema of the interval must be different');
end

if fa == 0 % a is the solution
xvect = a; fx = 0; esterr = 0; nit = 0;
resvect = fx; esterrvect = esterr;

1

return
elseif fb == 0 % b is the solution

xvect = b; fx = 0; esterr = 0; nit = 0;
resvect = fx; esterrvect = esterr;
return

end

nit = 0;
xvect = []; resvect = []; esterrvect = [];

% initial approximate solution
x = (a + b) / 2;
% initial error estimator is the half of the length of the interval
esterr = (b − a) / 2;
fx = fun(x);
xvect = x;
resvect = fx;
esterrvect = esterr;

% loop until convergence or maximum number of iterations reached
while esterr ≥ tol && nit < nmax

if fx == 0 % we found the solution
return;

end
if sign(fx) * sign(fa) < 0 % alpha is in (a,x)
b = x;

elseif sign(fx) * sign(fb) < 0 % alpha is in (x,b)
a = x;

else
error('Algorithm not operating correctly');

end
% calculate mid−point of updated interval
x = (a + b) / 2;
% the error estimator is now half of the previous one
esterr = esterr / 2;
fx = fun(x);
xvect = [xvect, x];
resvect = [resvect, fx];
esterrvect = [esterrvect, esterr];
nit = nit + 1;

end

if esterrvect(end) > tol
warning(['bisection stopped without converging to the desired tolerance ',...

'because the maximum number of iterations was reached']);
end

return� �
We solve the nonlinear equation f(x) by considering the following commands, taking tol =
10−1 as tolerance:

�
fun = @(x) sin(2*x) − 1 + x;
a = −1; b = 3; tol = 1e−1; nmax = 100;
[xvect,esterrvect,resvect,nit] = bisection(fun,a,b,tol,nmax);

2

x nit = xvect(nit+1) % last iterate (approximated zero)
nit
% x nit =
%
% 0.3125
%
% nit =
%
% 5� �
We observe that the bisection method converges in n = 5 iterations to the approximate zero
x(5) = 0.3125.

b) If we decrease the tolerance to the suggested values (tol = [10−2, 10−3, 10−4]), we obtain
the approximate solutions [x(8) = 0.3516, x(11) = 0.3525, x(15) = 0.3522], respectively (the
numbers in bracket represent again the iterations needed by the algorithm to converge).

c) Note that, above, we have made the algorithm more robust by adding several checks on the
input arguments and on some edge cases, and by displaying warning/error messages that can
help the user if something goes wrong.

Solution II (Theoretical and MATLAB)

a) We consider the following MATLAB commands to plot the function f(x):

�
fun = @(x) (1−x) .* sin(4*x) + 1/6;
a = 0; b = 2;
xv = linspace(a,b,1001); % xv=[a:(b−a)/1000:b]
plot(xv, fun(xv)); grid on� �

0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The conditions that need to be satisfied in order to apply the bisection method are the
continuity of f(x) in [a, b] and f(a)f(b) < 0 (i.e. f must change its sign over (a, b)). In
our example, these conditions are satisfied, since f(x) ∈ C∞([0, 2]), f(0) = 1/6 > 0, and
f(2) = − sin(8) + 1/6 < 0. The conditions imply that there exists at least one zero in the

3

interval (0, 2). By referring to the previous plot, we deduce that the zero α ∈ (0, 2) is also
unique.

b) The error estimator (error bound) at the nth iteration of the bisection method is ẽ(n) =
(b− a)/2n+1, so that:

e(n) = |x(n) − α| ≤ ẽ(n) =
b− a

2n+1
, n = 0, 1, . . . ,∞.

Thus, the stopping criterion based on the error estimator implies that n needs to satisfy
ẽ(n) < ϵ. Taking the logarithm on both sides yields

nmin > log2

(
b− a

ϵ

)
− 1 =

log(b− a)− log(ϵ)

log 2
− 1.

We obtain the condition nmin > 19.9316, so nmin = 20 iterations will suffice.

c) We consider the following MATLAB commands:

�
tol = 1e−6; nmax = 100;
[xvect,esterrvect,resvect,nit] = bisection(fun,a,b,tol,nmax);
% NOTE: the first entry of the vector xvect contains the initial guess of
% the zero obtained for n=0, i.e. the mid point of the interval [a,b]
resvect(19 + 1)
resvect(20 + 1)
% ans =
%
% −1.3514e−06
%
% ans =
%
% 1.2434e−06� �
Therefore, we have r(19) = −1.3514 · 10−6 and r(20) = 1.2434 · 10−6.

d) The residuals of the bisection method are not converging monotonically, and neither are the
errors. We verify this property for the function f(x) by plotting the absolute residuals |r(n)|
vs. n with the following MATLAB commands:

�
tol = 1e−6; nmax = 100;
[xvect,esterrvect,resvect,nit] = bisection(fun,a,b,tol,nmax);
% NOTE: the first entry of the vector xvect contains the initial guess of
% the zero obtained for n=0, i.e. the mid point of the interval [a,b]
resvect(19 + 1)
resvect(20 + 1)
nvect = 0 : nit;
resvect abs = abs(resvect);
semilogy(nvect, resvect abs, '−ok'); grid on� �

e) We consider the following MATLAB commands to obtain the plot representing the sequence
an vs. the number of iterations n.

�
alpha = xvect(20 + 1); % approximation of exact zero (alpha)

4

0 5 10 15 20

n, iteration number

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

|r
(n

)
|,
 a

b
s
o

lu
te

 r
e

s
id

u
a

l

nv = [0 : 18];
nv ind = nv + 1; % Matlab indexes start from 1
err n plus 1 = abs(xvect(nv ind + 1) − alpha);
err n = abs(xvect(nv ind) − alpha);
a n = err n plus 1 ./ err n;
plot(nv, a n, '−−k*'); grid on� �
As with the residuals, the convergence of the error e(n) = |x(n) − α| is not monotonic wrt
n in this case, see also point f), Subfigure (a). Therefore, a coefficient µ representing the
asymptotic convergence factor cannot be deduced from the sequence an, and we cannot infer
that the convergence is linear. However, note that this does not mean that the method does
not converge.

f) Since ẽ(n) = (b−a)/2n+1 and ẽ(n+1) = (b−a)/2n+2, it follows that ãn := ẽ(n+1)/ẽ(n) = ν = 1/2
for all n ≥ 0, and the sequence of the error estimators

{
ẽ(n)

}∞
n=1

converges linearly by definition
(the order of convergence is 1). We obtain the plot of the sequence ãn vs. n in Subfigure (b)
by using the following commands:

�
esterr n plus 1 = (b − a) ./ 2.ˆ(nv + 1);
esterr n = (b − a) ./ 2.ˆ(nv);
a tilde n = esterr n plus 1 ./ esterr n;
plot(nv, a tilde n, '−−k*'); grid on� �
We verify graphically that ν = 1/2 < 1. Even if we cannot establish the convergence order
of the bisection method according to definition (1) (i.e. for the error e(n) = |x(n) − α|), we
observe that the error estimators (bounds)

{
ẽ(n)

}∞
n=1

represent a dominating sequence of the

errors
{
e(n)

}∞
n=1

, i.e.:

e(n) = |x(n) − α| ≤ ẽ(n), n = 0, 1, . . . ,∞.

5

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

(a) an vs. n

0 2 4 6 8 10 12 14 16 18

-0.5

0

0.5

1

1.5

(b) ãn vs. n

In this case, the behavior of the error resembles that of the estimator, which converges with
order 1. We verify this by plotting the errors e(n) and error estimators ẽ(n) vs. n with the
following commands:

�
semilogy(nv, err n, '−ko', nv, esterr n, '−−ks'); grid on� �

0 2 4 6 8 10 12 14 16 18
10

-8

10
-6

10
-4

10
-2

10
0

10
2

error

error estimator

We remark again that the method does not have order 1 because the error is not monotonically
decreasing.

Solution III (Theoretical and MATLAB)

a) Since f(x) ∈ C0([1, 3]) and f(1)f(3) < 0, there exists at least one zero α ∈ (1, 3). By studying
the function f(x) in (1, 3) we deduce that the zero α is also unique since f(1) < 0 and the

6

function is strictly increasing; indeed, the first derivative of f(x) is strictly positive in the
interval: f ′(x) = 3x2 − 2 > 0 for all x ∈ [1, 3].

1 1.5 2 2.5 3

x

-10

-5

0

5

10

15

20

f(
x
)

b) The Newton method reads:

x(n+1) = x(n) − f(x(n))

f ′(x(n))
= x(n) − (x(n))3 − 2x(n) − 5

3(x(n))2 − 2
for n = 0, 1, 2, . . . ,

until a stopping criterion is satisfied, provided that f ′(x(n)) ̸= 0 for all n = 0, 1, 2,

c) We use MATLAB to determine the first three approximate zeros. We consider the following
commands:

�
fun = @(x) x.ˆ3 − 2*x − 5;
dfun = @(x) 3*x.ˆ2 − 2;
newton iterate = @(xn) xn − fun(xn) / dfun(xn);
x0 = 1.5;
x1 = newton iterate(x0)
x2 = newton iterate(x1)
x3 = newton iterate(x2)
% x1 =
%
% 2.4737
%
% x2 =
%
% 2.1564
%
% x3 =
%
% 2.0966� �
We deduce that the first three approximate zeros, starting from x(0) = 1.5, are x(1) = 2.4737,
x(2) = 2.1564 and x(3) = 2.0966. Note that α ≃ 2.0946.

7

