EPFL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 1 — September 11, 2024

Solutions — Introduction to Matlab® /Octave

Solution I (MATLAB)

We consider the following MATLAB code:

c =@(a, b, alpha) sgqrt(a2 + b2 - 2 » a * b » cos(alpha));

c(1l, 1, pi/3)
% ans = 1.000
c(3, 4, pi/2)
% ans = 5

Solution IT (MATLAB)

a) We consider the following MATLAB script logplot .m:

x = linspace(0, 1000, 100);
% Alternatively:

$ h = (1000 -0) / (100 -1); x =0 : h : 1000;
f=0Qe(x)((x-log(x+1)).74);
fx = £(x);

figure(1);
plot (x, fx);

figure(2);
semilogx(x, fx);
figure(3);
semilogy(x, fx);
figure(4);

loglog(x, fx);

b) For the function f(z) = [z — log(z + 1)]*, we have that:

<A4logx

for x € [0,1000],
2i410g(x__7)’

log(f(x)) = 4log(x — log(z + 1)) {

so that the curve (z, f(X)) is close to a straight line in the plot with the logarithmic scale
on both the axes; its slope is approximately p = 4, being f(z) = O(aP). Therefore, the plot
obtained with the command 1oglog is the most useful to estimate the order of growth of f(x).

c) We add the following MATLAB commands to the code suggested in a) to obtain the indicated
figure:

loglog(x, £(x));

axis ([10 1000 100 1lel2])

grid on

xlabel ('x")

ylabel ('f(x) = (x - log(x+l))~4') % MATLAB has a LaTeX interpreter
yticks ([le5 1el0])

title('An example of a function that grows very fast:')

Solution IIT (M ATLAB)

a) Since we conjecture that the error reads E, j, = Ch?, then we have that log E ;, = logC' +
plogh;, for h = 1,...,n. Therefore, when using a logarithmic scale on both axes (log-log
scale) for plotting the errors E. 5, vs. h;, we should obtain a straight line log E. p,, of slope p,
where p is the order of convergence. In order to graphically determine p, we plot the errors
E.p, vs. h; in log-log scale and compare the line obtained with those corresponding to the
lines (h;, hl) for some values of ¢, e.g. ¢ =1,2,3. The value of ¢ for which (h;, h}) is parallel
in log-log scale to (hj, E.p,) corresponds to the convergence order of the method p. We use
the following MATLAB commands to graphically determine p:

h=2."[-1 : -1 : -6 1;
err = [1.147e-1, 2.840e-2, 7.084e-3, 1.770e-3, 4.425e-4, 1.106e-4 1;
loglog(h, err, '-ok', h, h, '-.b', h, h.”2, '"--k', h, h."3, '":x');

xlabel('h'); ylabel('err'); grid on
legend('err', 'h', 'h"2', 'h"3', 'Location', 'SouthEast');

100 f ——
107" £ 3
102 ¢ E
> 10'35‘ 3
10'4;‘ E
—O—err
1079 T
L _ h2]
........ h3
1078 ' ' — ' ' —_
1072 107" 100

h

We deduce that the convergence order of the method is p = 2 since (hy, Ecp,;) is parallel to
(hi, h?) in the log-log scale plot.

We remark that in practical cases the conjecture E.j, = ChY can be typically used only for
“small” values of h;(h; — 0), for which it suffices to verify that the lines (h;, E.p;) and (h;, hY)
in log-log scale are parallel in the left part of the previous plot.

Still using the conjecture E,j, = ChY, let us consider the errors E.p, , = ChY_; and E.j, =
ChY corresponding to h = h;—1 and h; for i = 2,...,n, respectively. Then, we have:

fori=2,...,n.

l Ec,hi
Ec,hi _(hi >p p= Og(EC’hi—1)

R o (1)

Since in practical cases the conjecture E, j, = Ch? holds for “small” values of h;, we typically
select ¢ = n to determine the convergence order of the method p:

Een,
tog (2252
p=—F
log (hi"il)

We use the following MATLAB command to algebraically determine that p = 2:

p = log(err(end) / err(end - 1)) / log(h(end) / h(end - 1))
$ p = 2.0003

Solution IV (MATLAB)

We use the MATLAB commands:

=
Il
N
=
o
~
-
N
|
N
o

o0 o o

o
—
N
-
o
9]

a) We extract the element in position (1,3) (first row, third column) as:

o =
-
D\

n w
|

o\®

o
Nej

b) We extract the second row as:

% 12 10 8 6

do oo
Qe
5
)

o\

o
—
N
=
(@]

d) We extract the vector containing all the elements of the second row of the matrix except for
the third element as:

M(2,[1 2 4])
ans =

o\

o° oo

12 10 6

Exercise V (MATLAB)
We use the following MATLAB code:

fl = @(x) (sqrt(1 + x) = 1) ./ %x;
2 ./ (sgrt(1 +x) +1);
f3 =@(x) 0.5 - x/ 8+ x."2 /16 — 5 / 128 » x.°3;

1
(>
X
o

values_f1l [1; values_f2 = []; values_.f3 = [];

for k = 10 : 2 : 16

values_fl = [values_fl, f1(10°(-k)) 1;
values_f2 = [values_f2, £2(10°(-k)) 1;
values_f3 = [values_f3, £3(10°(-k)) 1;

end

values_fl, values_f2, values_f3

X =10."-(10 : 2 : 16);

f1(X), f2(X), £3(X)

% ans =
% 0.5000 0.5000 0.4885 0
% ans =
% 0.5000 0.5000 0.5000 0.5000
% ans =
% 0.5000 0.5000 0.5000 0.5000

r

)

We can clearly see that the expression f(z) = (v/1+ z — 1)/x suffers from severe round-off errors
as x approaches machine precision, because we compute the difference of two numbers with similar
values, v/1 + z and 1, which causes a cancellation of significant digits (hint: type eps in the console
to visualize the best relative precision that you can get using MATLAB).

