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Solutions – Ordinary differential equations

Solution I (MATLAB)

a) We consider the following MATLAB commands to obtain the result in Fig. 1 (left):

�
C1 = 0.15; C2 = 0.075;
b1 = 0.002; b2 = 0;
d1 = 0.0210; d2 = 0.0325;
t0 = 0; tf = 600;
y0 = [ 55; 20 ]; % [35; 40];
fun = @( t, y ) [ C1 * y( 1 ) * ( 1 − b1 * y( 1 ) − d2 * y( 2 ) ); ...

− C2 * y( 2 ) * ( 1 − b2 * y( 2 ) − d1 * y( 1 ) ) ];
Nh = 5000;
[ tv, uv forward euler ] = forward euler system( fun, y0, t0, tf, Nh );
plot( tv, uv forward euler( 1, : ), '.−b', tv, uv forward euler( 2, : ), '.−r' );
grid; axis([−0.1+t0 tf+0.1 −1 80]);
legend('Prey','Predator','Location','SouthEast');� �
We observe that the components of the solution un ∈ R2 tend to an equilibrium vector yE ∈ R2

for t “sufficiently” large.

b) We use the following MATLAB commands to plot the trajectory of the solution in the phase
space as in Fig. 1(right):

�
equilibrium point = [ 47.6190; 27.8388 ];
figure; plot( uv forward euler( 1, : ), uv forward euler( 2, : ), '−k', ...

equilibrium point( 1 ), equilibrium point( 2 ), '+r' );
xlabel('Prey'); ylabel('Predator');
grid; axis([10 80 10 50]);� �
The trajectory confirms the evolution of the components of the solutions (the number of
preys and predators) from the initial condition y0 = (55, 20)T ∈ R2 to the equilibrium point
yE ∈ R2 (indicated in red).
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Figure 1: Prey-Predator model with y0 = (55, 20)T ; approximate solution un vs t (left) and trajec-
tory in the phase space (right).
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Figure 2: Prey-Predator model with y0 = (35, 40)T ; approximate solution un vs t (left) and trajec-
tory in the phase space (right).

c) We repeat points a) and b) with a different initial condition y0 = (35, 40)T , where the number
of predators is larger than the number of preys. We obtain the result of Fig. 2 for which we
observe that, even if we start from a different initial condition and the trajectory is different
from that obtained at point b), the number of preys and predators still converge to the same
equilibrium point yE . However, we remark that the previous result largely depends on the
data chosen for the prey-predator model.

Solution II (MATLAB)

a) We consider the following MATLAB commands to obtain the truss bridge reported in Fig. 3.
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�
kbeam = 1e3; mbeam = 2;
alpha = 0.01; beta = alpha;
Nnodes = 29; % number of nodes of the bridge (odd)
m = 2 * Nnodes;
[ K ] = bridge stiffness matrix( Nnodes, kbeam );
M = mbeam * speye( m, m );
C = alpha * M + beta * K;
plot bridge( Nnodes );� �
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Figure 3: Truss bridge model for Nnodes = 29.

b) We use the following commands to define the matrices M̃ , C̃, and K̃, with m̃ = 2Nnodes − 3.

�
i t = [ 3 : m − 1 ];
m t = m − 3;
M t = M( i t, i t ); C t = C( i t, i t ); K t = K( i t, i t );� �

c) In order to rewrite the system, we set ỹ(t) = (w̃(t)T , d̃(t)T )T ∈ R2m̃ with w̃(t) = d̃′(t) ∈ Rm̃

an auxiliary vector representing the velocity of the nodes. The initial condition reads ỹ0 =

(ṽT
0 , d̃

T
0 )

T . By introducing the block invertible matrix P̃ =

[
M̃ 0

0 Ĩ

]
with Ĩ ∈ Rm̃×m̃ the

identity matrix, we obtain that Ã = P̃−1

[
−C̃ −K̃

Ĩ 0

]
and g̃(t) = P̃−1

(
b̃(t)T ,0

)T
.

�
I t = speye( m t, m t );
P t = [ M t, sparse( m t, m t ); sparse( m t, m t ), I t ];
A t = P t \ [ − C t, − K t; I t, sparse( m t, m t ) ];� �

d) We consider the following MATLAB commands for the external force f ext15 (t) = (0,−q1(t))
T :

�
node force = 15; % node in which the force is applied
b = zeros( m, 1 ); b( 2 * node force, 1 ) = −1;
b t = b( i t, 1 );
y0 t = zeros( 2 * m t, 1 );
t0 = 0; tf = 250;
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t ref = 25;
g t = @( t ) P t \ [ b t * ( ( t / t ref ) * ( t ≤ t ref ) + ...

1 * ( t > t ref ) ); zeros( m t, 1 ) ];
Nh = 2500;
h = ( tf − t0 ) / Nh;
[ tv, uv ] = backward euler system nhcc( A t, g t, y0 t, t0, tf, Nh );
d t = uv( m t + 1 : end, : );
d = zeros( m, Nh + 1 );
d( i t, : ) = d t( :, : ); % displacement vector (including the constraints)
inode = 15; % node in which we are interested to evaluate the displacement
u inode x = d( 2 * inode − 1, : ); u inode y = d( 2 * inode, : );
plot( tv, u inode x, '−b', tv, u inode y, '−r' );
grid on; xlabel('t'); ylabel('disp');
legend('disp x','disp y' );� �
We obtain the result displayed in Fig. 4(a). We observe that both the horizontal and vertical
displacements converge to constant values after some oscillations for t > tref .

Fig. 4(b) is obtained by setting f ext15 (t) = (0,−q2(t))
T and redefining g̃(t) as:

�
g t = @( t ) P t \ [ b t * ( ( t / t ref ) * ( t ≤ t ref ) ); zeros( m t, 1 ) ];� �
The results of Fig. 4(c–f) are obtained by setting f ext15 (t) = (0,−qk(t))

T with k = 3, 4, 5. For
example, for the case k = 3 we use the MATLAB command:

�
omega = 0.25;
g t = @( t ) P t \ [ b t * sin( omega * t ); zeros( m t, 1 ) ];� �
We observe that in Fig. 4(c–d) the amplitude of the oscillations induced on the displacement
by the external force f ext15 (t) remains relatively small for ω3 = 0.25 and ω5 = 0.65.

For ω4 = 0.4688, the amplitude of the oscillations of the displacements is very large compared
to the previous cases. Indeed, the dynamical system is in condition of resonance for ω =
ω4 = 0.4688 since this angular frequency is close to one of the natural frequencies of the
structural model. We can compute the values of these natural angular frequencies by solving
a generalized eigenvalue problem as originally done in Series 11. Specifically, we consider the
following MATLAB command to compute the 5 smallest natural angular frequencies:

�
omega natural = sort( sqrt( eigs( K t, M t, 5, 'SM' )' ) )
% omega natural =
% 0.4688 1.6652 2.3342 3.6036 5.5365� �
In Fig. 4(f) we report the result obtained for the same external force but without damping
(C = 0). We observe that the amplitude of the oscillations is larger than in the previous
(damped) case.

The following MATLAB commands can be used to visualize with an animation the dynamics
of the truss bridge under the action of the external forces.

�
for i = 1 : 10 : Nh + 1

plot bridge( Nnodes, d( :, i ) );
pause( 0.1 )
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(e) q4(t), α = β = 0.01 (f) q4(t), α = β = 0

Figure 4: Numerical approximations of the displacements u15,x(t) (blue) and u15,y(t) (red) vs. time
t for f ext15 (t) = (0,−qk(t))

T with k = 1, . . . , 5.
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Figure 5: Deformed configuration of the truss bridge model at time t = 62 obtained for f ext15 (t) =
(0,−q4(t))

T .

end� �
The deformed configuration of the bridge obtained for f ext15 (t) = (0,−q4(t))

T at time t = 62 is
reported for reference in Fig. 5.

6


