EPFL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 14 — December 18, 2024

Solutions — Ordinary differential equations

Solution I (MATLAB)

a)

We consider the following MATLAB commands to obtain the result in Fig. 1 (left):

Cl = 0.15; C2 = 0.075;
bl = 0.002; b2 = 0;
dl = 0.0210; d2 = 0.0325;
t0 = 0; tf = 600;
yO = [55; 20 1; % [35; 40];
fun = @(t, v) [Cl » y(1) (1 -Dbl »y(1l) —-—d2 xvy(2));
- C2 *y(2) * (1 -Db2*vy(2)-dl ~y(1))1;
Nh = 5000;
[tv, uv_-forward.euler] = forward.euler_system(fun, y0, t0, tf, Nh);
plot(tv, uv_forward.euler(1, :), '.-b', tv, uv_forward.euler(2, :), '".-r');

grid; axis([-0.1+t0 tf+0.1 -1 80]);
legend('Prey', 'Predator', 'Location', 'SouthEast"');

We observe that the components of the solution u,, € R? tend to an equilibrium vector yr € R?
for ¢t “sufficiently” large.

We use the following MATLAB commands to plot the trajectory of the solution in the phase
space as in Fig. 1(right):

equilibrium_point = [47.6190; 27.8388 1;
figure; plot(uv-forward.-euler(1, :), uv-forward.euler(2, :), '-k',
equilibrium_point(1), equilibrium_point(2), '+r');

xlabel ('Prey'); ylabel('Predator');
grid; axis([10 80 10 501]);

The trajectory confirms the evolution of the components of the solutions (the number of
preys and predators) from the initial condition yo = (55,20)7 € R? to the equilibrium point
yE € R? (indicated in red).

System of ODEs. Forward Euler

System of ODEs, Phase plane, Forward Euler method

Predator
o
)
T

30 40 50 60 70 80

—a—Prey 10 20 Pre
0 ; ; +P1‘udn,t-urfl Y

0 100 200 300 400 500 600

Figure 1: Prey-Predator model with yo = (55,20)7; approximate solution u,, vs ¢ (left) and trajec-
tory in the phase space (right).

System of ODEs, Forward BEuler

System of ODEs, Phase plane, Forward Euler method

Predator
w2
<)
T

251
201
E 151 : ~
10F | 10 | | | | | |
1! 10 20 30 40 50 60 70 80
—a—Prey Prey
0 +P1‘cdat-ur.l v

0 100 200 300 400 500 600
¢

Figure 2: Prey-Predator model with yo = (35,40)7; approximate solution u,, vs ¢ (left) and trajec-
tory in the phase space (right).

c) We repeat points a) and b) with a different initial condition yo = (35,40)7, where the number
of predators is larger than the number of preys. We obtain the result of Fig. 2 for which we
observe that, even if we start from a different initial condition and the trajectory is different
from that obtained at point b), the number of preys and predators still converge to the same
equilibrium point yr. However, we remark that the previous result largely depends on the
data chosen for the prey-predator model.

Solution IT (MATLAB)

a) We consider the following MATLAB commands to obtain the truss bridge reported in Fig. 3.

b)

kbeam = le3; mbeam = 2;

alpha = 0.01; beta = alpha;

Nnodes = 29; % number of nodes of the bridge (odd)
2 x Nnodes;

] = bridge_stiffnessmatrix(Nnodes, kbeam);
mbeam * speye(m, m);

= alpha * M + beta x K;

plot_bridge (Nnodes);

=

m
[
M
C

X

Figure 3: Truss bridge model for N,pges = 29.

We use the following commands to define the matrices M , C , and K , with m = 2N,04es — 3.

it =[3:m-11;
m.t = m - 3;
M.t =M(it, it); C.t =C(1.t, it); K.t = K(i-t, it);

In order to rewrite the system, we set y(t) = (W(t)7,d(t)T)T € R2™ with w(t) = d'(t) € R™
an auxiliary vector representing the velocity of the nodes. The initial condition reads yo =

V& ,&OT)T. By introducing the block invertible matrix P = M

%] with I € R™X™ the

-C -K

identity matrix, we obtain that A=p1 7 0

] and g(t) = P! (B(t)T,o)T

I.t = speye(m_-t, m.t);
P_t [M.t, sparse(m_.t, m.t); sparse(m.t, m.t), I_t];
At =Pt \ [-Ct, - Kt; It, sparse(m-t, mt)];

We consider the following MATLAB commands for the external force f{#(t) = (0, —q1(¢))?:

node_force = 15; % node in which the force is applied
b = zeros(m, 1); b(2 x node_force, 1) = -1;

bt =b(it, 1);

yO0_.t = zeros(2 » m_t, 1);

t0 = 0; tf = 250;

t_ref = 25;
gt =Q@(t) Pt \ [bt ((t/ tiref) » (t < tref) + ...
1 « (t > t_.ref)); zeros(mt, 1) 1;
Nh = 2500;
h = (tf - t0) / Nh;

[tv, uv] = backward_euler_system_.nhcc(A_t, g-t, yO0O_-t, t0, tf, Nh);
d.t = uv(m.t + 1 : end, :);
d = zeros(m, Nh + 1);

d(i-t,) =d-t(:, :); % displacement vector (including the constraints)
inode = 15; % node in which we are interested to evaluate the displacement
u-inode_.x = d(2 * inode - 1, :); u-inode.y = d(2 % inode, :);

plot(tv, u-inode_x, '-b', tv, u.inode.y, '-r');

grid on; xlabel('t'); vylabel('disp');
legend('disp x', 'disp v');

We obtain the result displayed in Fig. 4(a). We observe that both the horizontal and vertical
displacements converge to constant values after some oscillations for ¢t > t,.;.

Fig. 4(b) is obtained by setting ff#(t) = (0, —g2(t))? and redefining g(t) as:

Eg,t = @(t) P_t \ [bt = ((t / t.ref) = (t < t_ref)); zeros(m_t, 1) 1; J

The results of Fig. 4(c—f) are obtained by setting £#!(t) = (0, —qx(t))” with k = 3,4,5. For
example, for the case k = 3 we use the MATLAB command:

P_t \ [bot » sin(omega * t); zeros(mt, 1) 1; J

We observe that in Fig. 4(c—d) the amplitude of the oscillations induced on the displacement

by the external force f{¥!(t) remains relatively small for ws = 0.25 and w5 = 0.65.

For wy = 0.4688, the amplitude of the oscillations of the displacements is very large compared
to the previous cases. Indeed, the dynamical system is in condition of resonance for w =
wyq = 0.4688 since this angular frequency is close to one of the natural frequencies of the
structural model. We can compute the values of these natural angular frequencies by solving
a generalized eigenvalue problem as originally done in Series 11. Specifically, we consider the
following MATLAB command to compute the 5 smallest natural angular frequencies:

omega_-natural = sort(sqrt(eigs(K_.t, M_t, 5, 'SM')'))
% omega-natural =
0.4688 1.6652 2.3342 3.6036 5.5365

o°

In Fig. 4(f) we report the result obtained for the same external force but without damping
(C = 0). We observe that the amplitude of the oscillations is larger than in the previous
(damped) case.

The following MATLAB commands can be used to visualize with an animation the dynamics
of the truss bridge under the action of the external forces.

for i =1 : 10 : Nh + 1
plot_bridge (Nnodes, d(:, 1));
pause(0.1)

0.47

0.3

0.1f

disp
=)

Displacement of the node 15

——disp ‘
——disp y

50 100 150 200 250
t

(a) q1(t)

Displacement of the node 15

0.4p

0.31

disp

T
—disp x|
——disp

50 100 150 200 250
t

(c) gs(t)

Displacement of the node 15

T

50 100 150 200 250
t

(e) qa(t), « = B =0.01

disp

disp

disp

0.4

0.3

0.2

0.4

0.3

0.2

0.1

Displacement of the node 15

——disp ‘
—disp

50

100 150 200 250
t

(b) q2()

Displacement of the node 15

T
—disp x
——disp y

50

100 150 200 250
t

(d) g5(t)

Displacement of the node 15
‘ : ——disp ‘
n n n —disp

| |

100 150 200 250
t

(f) qu(t), =B =0

Figure 4: Numerical approximations of the displacements u;s ;(t) (blue) and uys4(t) (red) vs. time
t for £{24(t) = (0, —qx(t))? with k =1,...,5.

A'IA-""A'A'A'A'A'A.'A-..wm'lb
AVAVAVAVAVAVAYA

X

Figure 5: Deformed configuration of the truss bridge model at time ¢ = 62 obtained for ff#*(¢) =
(0, —qa(t)".

Lend J

The deformed configuration of the bridge obtained for ff2(t) = (0, —q4(t))T at time t = 62 is
reported for reference in Fig. 5.

