EPFL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 13 — December 11, 2024

Solutions — Ordinary differential equations
Solution I (Theoretical)

Proposition 1 (Cauchy-Lipschitz) If f(t,y) is continuous w.r.t. both arguments and in addition
globally Lipschitz-continuous w.r.t. the second argument y, i.e. there exists L > 0 s.t.

|f(ty1) = f(ty2)l S Llyn —yo| forallt €1, for allyi,y2 €R,
for some interval I = [to,ty], then there exists a unique solution y(t) of the Cauchy problem:
y'(t)=ft,yt), tel,
y(0) = o,
for all yo € R.

We verify the conditions of the Cauchy-Lipschitz theorem for the case f(t,y) = f(y) = — arctan(y),
to = 0, ty = oo. First, we note that f is continuous w.r.t. both arguments. We observe that if
fe Cl(t(),tf), then:

Ft) — Flt)| < sup ‘giu,y)\ gt — 1ol

yeRtel

so that, if sup,ep tes ‘%(f, y)‘ < 00, we can choose L := sup,cp e1 ‘g—g(t, y)‘ as the global Lipschitz
constant. Indeed, this is the case, as the partial derivative is:

87]" 1

t, =|l——=| <1 f IlyeR,teR.
ay(?/)’ ’1+y2 or all y

As the ODE ¢/(t) = — arctan(y(t)) is autonomous (f(t,y) = f(y)), the Lipschitz constant L does
not depend on the time interval I and we can take L = 1.

Since the hypotheses of the Proposition are satisfied, the solution y(¢) of the Cauchy problem exists
and it is unique for all the times ¢ € I.

Solution IT (MATLAB)

We consider the following MATLAB implementation:

function [tv, uv] = runge_kutta_4(fun, y0, t0, tf, Nh)
RUNGE_KUTTA_4 Runge—-Kutta 4, explicit method for the scalar ODE in the
form:

S y'(t) = £(t,y(t)), t \in (tO,tf)

% y(0) = y-0

% [tv, uv] = runge_kutta_4(fun, y0, t0, tf, Nh)

% Inputs: fun = function handle for f(t,y), fun = Q@(t,y)

% v0 = initial value

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = vector of approximate solution at times tv

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh

Kl = fun(tv(n), uv(n));

K2 = fun(tv(n) +h / 2, uv(n) +h / 2 Kl);

K3 = fun(tv(n) + h / 2, uww(n) +h / 2 % K2);

K4 = fun(tv(n + 1), uv(n) + h = K3);

uwv(n+ 1) =uv(n) +h/ 6 x (KL + 2 K2+ 2 » K3 + K4);
end
return

We use the following MATLAB commands to obtain the results in Fig. 1:

alpha = 1.5; Dbeta = - 2e-1;

t0 = 0; tf = 30;

y0 = alpha + sin(t0);

fun = @(t, v) yv * (cos(t) / (alpha + sin(t)) + beta);
Nh = 30;

$[tv, uv_forward_euler] = forward.euler(fun, yO0, tO0, tf, Nh);
%[tv, uv_heun] = heun(fun, yO0, tO0, tf, Nh);

[tv, uv_runge_kutta_-4] = runge_kutta-4(fun, yO0, t0, tf, Nh);

tv_plot = linspace(t0, tf, 5001);

y.ex = @(t) (alpha + sin(t)) .*x exp(beta » (t - t0));

plot (tv_plot, y-ex(tv_plot), '.-r', tv, uv_runge_kutta-4, '.-g');
grid; axis([-0.1+t0 tf+0.1 -0.25 2.5]);

legend(' y-{ex}(t)', " u-{n}, F.E.', " u_{n}, Heun', ' u-{n}, R.-K. 4');

We observe that the numerical approximation by means of the RK4 method is representing
well the exact solution y(t) already for Nj = 30, better than the Heun and forward Euler
methods do.

We recall that the forward Euler method has convergence order 1, while the Heun and RK4

Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 m
2.5p T T . .

— Yeall)

—— u,, F.E.
—e— u,, Heun
—o— u,, R.-K. 4

0.5

0 5 10 15 20 25 30

Figure 1: Numerical approximations by the forward Euler, Heun, and RK4 methods for ¢/ =
f(t,y(t)) and Ny, = 30.

methods are of orders 2 and 4, respectively, assuming y(t) to be “sufficiently” regular. In this
case, for the setup considered at point b), we have y(t) € C°°(I). In order to graphically verify
the convergence orders, we compare the errors with the curves (h, h), (h, h?), and (h, h*). We

consider the following MATLAB commands:

errv_n_forward_euler = [];
errv_n_heun = [];
errv_n_runge_kutta_4 = [];

Nhv = [30 60 120 240 480 960];
hv = (tf - t0) ./ Nhv;

t_bar = 10;

for Nh = Nhv

hv, scale_factor.l % hv, '--k', hv, scale_factor_.2 x hv."2,

h = (tf - t0) / Nh; $ h
n= (tbar - t0) / h; % step n varies with Nh
[tv, uv_forward.euler] = forward.euler(fun, y0, t0, tf, Nh);
[tv, uv_.heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv_runge_kutta_4] = runge_kutta_4(fun, y0, t0, tf, Nh);
% notice that vector index starts from 1 in Matlab
% while n from zero, n = 0,1, ...
errv_n_forward_euler = [errv_n_forward_euler,
abs(y-ex(t.bar) - uv_forward.euler(n + 1)) 1;
errv_n_heun = [errv.n_heun,
abs(vy-.ex(t.bar) — uv_cheun(n + 1)) 1;
errv_n_runge_kutta_-4 = [errv_.n_runge_kutta_4,
abs(y-ex(t.bar) - uv_.runge_kutta4(n + 1)) 1;
end
% scale factors for visualization of the curves (h,h), (h,h"2), (h,h"4)
scale_factor_.l = 2 x errv_n_.forward_euler(end) / hv(end);
scale_factor.2 = 2 * errv_n_heun(end) / hv(end)"2;
scale_factor.3 = 2 » errv._n_.runge_kutta_-4(end) / hv(end) "4;
figure;
loglog(hv, errv.n_forward_euler, '-xb', hv, errv_n_heun, '-or',
hv, errv_n_runge_kutta-4, '-dg',

Model problem, Errors F.E., B.E., H., R.-K.4. methods

e > ¢,, F.E.
107+ P Uy, Heuny
Av S €n, 4
-=-h
- }1’2
—--pa

107" 10°

Figure 2: Errors for the forward Euler, Heun, and RK4 methods vs h for y' = f(t, y(t)).

hv, scale_factor_.3 * hv. 4, '":k');
grid; axis([2e-2 2 1le-10 1le0])
legend(' e_{n}, F.E.',' u_{n}, Heun', ' e_{n}, R.K.4"',

' h', v h“zv, ' hh4!)’.

We obtain the results in Fig. 2. The curves of the errors are parallel (in logarithmic scales)
to the curves (h,h), (h,h?), and (h,h*) for the forward Euler, Heun, and RK4 methods,
respectively. Hence, the results confirm the convergence orders expected from the theory.

Alternatively, the convergence order of the methods can be estimated e.g. by means of the
following MATLAB commands for h “sufficiently” small, since e,, < C hP for a general method.

conv_ord_Forward_Euler = log(errv.n_forward_euler (end-1) /
errv_n_forward_euler (end)) /
log(hv(end-1) / hv(end))
% conv_ord_Forward_Euler =
0.9996

o\

We obtain that the estimated convergence order for the forward Euler method is prg = 0.9996.
Similarly, for the Heun method we obtain the convergence order pg = 1.9971, while for RK4
we have pri4 = 3.9618, as expected.

d) We consider the following MATLAB commands to obtain the results in Fig. 3 (left):

t0 = 0; tf = 40;

lambda = -0.525; y0 = 1;
fun = @(t, y) lambda * y;
Nh = 10; % or 11

[tv, uv_-forward.euler] = forward_euler(fun, y0, t0, tf, Nh);
[tv, uv_heun] = heun(fun, y0, t0, tf, Nh);

[tv, uv_-runge_kutta-4] = runge_kutta-4(fun, y0, tO0, tf, Nh);
tv_plot = linspace(t0, tf, 5001);

yex = @(t) yv0O » exp(lambda » (t — t0));

figure;

Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 m
2.5 T T T T T

e !/M(f)

—— u,, F.E.

—e— u,, Heun [
un,, R.-K. 4

VoV VY

T - 25
— yer(”
—— u,, F.E.
—e— u,, Heun 2F
Up, R.-K. 4
1.5F
-0.5

—1F
I | ~15 I I
30 35 40 0 5 10

N, = 10

15 20 25 30 35 40

N, =11

Figure 3: Model problem solved with the forward Euler, Heun, and RK4 methods.

plot (tv-plot, y-ex(tv_plot), '-k',
tv, uv.heun, '.-r', tv, uv_runge_kutta-4, '.-g');
grid; axis([-0.1+t0 tf+0.1 -1.5 2.5 1);
legend(' y-{ex}(t)', " u-{n}, F.E.', ' u_{n}, Heun',
" u_{n}, R.-K.4', 'Location', 'NorthEast');

tv, uv_forward_euler,

l'_bY,

Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 m

We deduce from Fig. 3 that for, N = 10 (i.e. for h = tf];hto =4

=

), the forward Euler and Heun

methods are not absolutely stable, while the RK4 method is. In particular, for A < 0, we have

that the forward FEuler and Heun methods are absolutely stable for 0 < h < hﬂff 2

while the RK4 method for 0 < h < hfiE4 ~ 27853 For the model problem under consideration

maxr — |,\|

we have A\ = —0.525, so that h,ﬁng = 3.8095 and hEK4 —

max

5.3053. Since, h =4 > h

FE,H

maxr >

the forward Euler and Heun methods are not abolutely stable, while the RK4 method is. In

order to recover the absolute stability for all the methods, we calculate N, re.n as the smallest

max

integer larger than ;@%: N, re.n = 11. We use the following MATLAB commands:

mazx hmaz

h.max_ FE_H = 2 / abs(
h.max_FE_H =
3.8095
_h_max_ FE_H = ceil((
N_h_max_FE_H =
11
_max_RK4 = 2.7853 / abs(
h_max_RK4 =
5.3053
_h_max_RK4 = ceil ((
N_h_max_RK4 =
8

lambda)

o° o

=

tf - t0) / h.max_FE_H)

o° o

oy

lambda)

o° o

=z

tf - t0) / h.max_RK4)

o\

o

J

We report in Fig. 3 (right) the numerical solutions obtained for N, =
all methods are absolutely stable since the condition h < h;,q. is satisfied in all cases. We

11. We verify that

remark that, for Nj, < Njprxs = 8, all methods would provide (absolutely) unstable numerical
solutions.

Exercise III (MATLAB)

a)

We consider the following implementation of the MATLAB function
forward euler_system.m:

function [tv, uv] = forward_euler_system(fun, y0, tO0, tf, Nh)
FORWARD_EULER_SYSTEM Forward Euler method for solving a system of ODEs
in the form:

y'(t) = F(t,y(t)), t \in (t0,tf)

y(0) = y-0

vy, y-0 are vectors of size (m x 1)

[tv, uv] = forward.euler_system(fun, vyO0, t0, tf, Nh)
Inputs: fun = function handle for F(t,y), fun = @(t,y)
a vector of size (m x 1) must be returned by fun
vO0 = initial vector of size (m x 1)
t0 = initial time
tf = final time
Nh = number of time subintervals
Output: tv = vector of time steps (1 x (Nh+1))
uv = matrix of the approximate solution at times tv

o0 o d° o A% A O° A o A° O A° o o° o o° o

size (m x (Nh+1l)

tv = linspace(t0, tf, Nh + 1);
h (tf - t0) / Nh;

m = length(y0);
uv = zeros(m, Nh + 1);
uv(:, 1) = y0;

for n = 1 : Nh
uv(:, n+ 1) =uv(:, n) + h « fun(tv(n), uv(:, n));

end

return

We implement the MATLAB function backward_euler_system_.nhcc.m as:

function [tv, uv] = backward.euler_system.nhcc(A, g, y0, t0, tf, Nh)
BACKWARD_EULER_SYSTEM_NHCC Backward Euler method for solving a system of
ODEs in the nonhomogeneous with constant coefficients form:

y'(t) = A y(t) + g(t), t \in (tO0,tf)

y(0) = y-0

vy, y-0 are vectors of size (m x 1)

o0 A o0 o° o° o° A° o° J° o° o

[tv, uv] = backward_euler_system.nhcc(A, g, y0, t0, tf, Nh)
Inputs: A = square matrix of size (m x m)
g = function handle for g(t), g = @(t)
)

a vector of size (m x 1) must be returned by g

yO0 = initial vector of size (m x 1)

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

% uv = matrix of the approximate solution at times tv

size (m x (Nh+1))

tv = linspace(t0, tf, Nh + 1);
h = (tf - t0) / Nh;

m = length(yO0);

uv = zeros(m, Nh + 1);
uv(:, 1) = yO;
I = speye(m, m);

uv(:, n + 1) =M\ (uv(:, n) +h*g(tv(n+1)));

return

We solve the problem by using the following MATLAB commands to obtain the results in
Fig. 4.

1 4

g=0@Ct) [0; 01 t;
fun = @(t, v) A * y;
Nh = 25; % 8 % 9
[tv, uv_forward_euler] = forward.euler_system(fun, yO0, t0, tf, Nh);
figure;
plot(tv, uv_forward.euler(1, :), '.-b',

tv, uv_forward_euler(2, :), '.-r');

grid; axis([-0.1+t0 tf+0.1 -1 1.257]);
title('System of ODEs, Forward Euler');
legend('y(1l)','y(2)"','Location', "NorthEast"');

[tv, uv.backward_euler] = backward.euler_system_nhcc(A, g, y0, t0, tf, Nh);
figure;
plot (tv, uv.-backward_euler(1, :), '.-b',

tv, uv_backward_.euler(2, :), '.-r');

grid; axis([-0.1+t0 tf+0.1 -1 1.2571);
title('System of ODEs, Backward Euler');
legend('y (1) ', 'y (2)"', 'Location', 'NorthEast");

)

The results show that, as expected, both components of the solution tend to zero for ¢ “suffi-
ciently” large for both forward and backward methods.

We repeat point c) by considering N;, = 8. We obtain the results in Fig. 5. We observe that
the numerical solution obtained with the forward Euler method is (absolutely) unstable, while
that obtained with the backward Euler method is absolutely stable.

0.5

System of ODEs, Forward Euler System of ODEs, Backward Euler

0.5F

Figure 4: Numerical approximation of the system of ODEs y'(t) = F(t,y(t)) = Ay(t) with y(to) =
y0; components of the numerical solution u, vs. ¢ obtained with the forward Euler method (left)
and backward Euler method (right) for N, = 25.

0.5

System of ODEs, Forward Euler System of ODEs, Backward Euler

——y(1)
1H ——y(2)

0.5r

>
0 >4 y - S
-0.5
1L 1 1 1 1 1
0 1 2 3 4 5 1 2 3 4 5
t t
Forward Euler Backward Euler

Figure 5: Numerical approximation of the system of ODEs y'(t) = F(t,y(t)) = Ay(t) with y(¢9) =
y0; components of the numerical solution u,, vs. t obtained with the forward Euler method (left)
and backward Euler method (right) for Nj, = 8.

The result was expected, since the backward Euler method is unconditionally absolutely stable,
while the forward Euler method is only conditionally stable. In particular, since the system of
ODEs is in the form y’(t) = Ay(t), the stability condition on the step size h for the forward
Euler method depends on the eigenvalues of the matrix A € C™*™. If all the eigenvalues of A
are real and negative, we have the following stability condition for the forward Euler method
(and also for the Heun method): 0 < h < hypae = 2

max;

By using the following MATLAB commands we verify that the eigenvalues of A are real and

System of ODEs, Forward Euler System of ODEs, Backward Euler

——y(1) ——y(1)

1 ——y(2) 1k ——y(2)
05F 1 0.5¢

= =

o of = S
-0.5F -0.5

L) ‘ ‘ ‘ ‘ L ‘ ‘ ‘ ‘ ‘

0 1 2 3 4 5 0 1 2 3 4 5

t t
Forward Euler Backward Euler

Figure 6: Numerical approximation of the system of ODEs y'(t) = F(¢t,y(t)) = Ay(t) with y(to) =
y0; components of the numerical solution u,, vs. ¢ obtained with the forward Euler method (left)
and backward Euler method (right) for Nj, = 9.

negative, so that the condition above applies: h < 0.5858, which corresponds to N, > Ny, .. =

9.

lambda = (eig(A))'

% lambda =

% -3.4142 -0.5858

h.max = 2 / max(abs(lambda))

% h_max =

% 0.5858

N_h_max = ceil((tf - t0) / h_max)
% N_h_max =

% 9

We report in Fig. 6 the results obtained for N, = 9. We verify that, in this case, the forward
Euler method is also absolutely stable, since 0 < h < Amqq-

