
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 13 – December 11, 2024

Solutions – Ordinary differential equations

Solution I (Theoretical)

Proposition 1 (Cauchy-Lipschitz) If f(t, y) is continuous w.r.t. both arguments and in addition
globally Lipschitz-continuous w.r.t. the second argument y, i.e. there exists L > 0 s.t.

|f(t, y1)− f(t, y2)| ≤ L |y1 − y2| for all t ∈ I, for all y1, y2 ∈ R,

for some interval I = [t0, tf], then there exists a unique solution y(t) of the Cauchy problem:{
y′(t) = f(t, y(t)), t ∈ I,

y(0) = y0,

for all y0 ∈ R.

We verify the conditions of the Cauchy-Lipschitz theorem for the case f(t, y) = f(y) = − arctan(y),
t0 = 0, tf = ∞. First, we note that f is continuous w.r.t. both arguments. We observe that if
f ∈ C1(t0, tf), then:

|f(t, y1)− f(t, y2)| ≤ sup
y∈R,t∈I

∣∣∣∣∂f∂y (t, y)
∣∣∣∣ · |y1 − y2| ,

so that, if supy∈R,t∈I

∣∣∣∂f∂y (t, y)∣∣∣ < ∞, we can choose L := supy∈R,t∈I

∣∣∣∂f∂y (t, y)∣∣∣ as the global Lipschitz
constant. Indeed, this is the case, as the partial derivative is:∣∣∣∣∂f∂y (t, y)

∣∣∣∣ = ∣∣∣∣ 1

1 + y2

∣∣∣∣ ≤ 1 for all y ∈ R, t ∈ R.

As the ODE y′(t) = − arctan(y(t)) is autonomous (f(t, y) = f(y)), the Lipschitz constant L does
not depend on the time interval I and we can take L = 1.
Since the hypotheses of the Proposition are satisfied, the solution y(t) of the Cauchy problem exists
and it is unique for all the times t ∈ I.

Solution II (MATLAB)

1

a) We consider the following MATLAB implementation:

�
function [tv, uv] = runge kutta 4(fun, y0, t0, tf, Nh)
% RUNGE KUTTA 4 Runge−Kutta 4, explicit method for the scalar ODE in the
% form:
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% [tv, uv] = runge kutta 4(fun, y0, t0, tf, Nh)
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = vector of approximate solution at times tv
%

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

uv = zeros(1, Nh + 1);
uv(1) = y0;

for n = 1 : Nh
K1 = fun(tv(n), uv(n));
K2 = fun(tv(n) + h / 2, uv(n) + h / 2 * K1);
K3 = fun(tv(n) + h / 2, uv(n) + h / 2 * K2);
K4 = fun(tv(n + 1), uv(n) + h * K3);
uv(n + 1) = uv(n) + h / 6 * (K1 + 2 * K2 + 2 * K3 + K4);

end

return� �
b) We use the following MATLAB commands to obtain the results in Fig. 1:

�
alpha = 1.5; beta = − 2e−1;
t0 = 0; tf = 30;
y0 = alpha + sin(t0);
fun = @(t, y) y * (cos(t) / (alpha + sin(t)) + beta);
Nh = 30;
%[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
%[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv runge kutta 4] = runge kutta 4(fun, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 5001);
y ex = @(t) (alpha + sin(t)) .* exp(beta * (t − t0));
plot(tv plot, y ex(tv plot), '.−r', tv, uv runge kutta 4, '.−g');
grid; axis([−0.1+t0 tf+0.1 −0.25 2.5]);
legend(' y {ex}(t)', ' u {n}, F.E.', ' u {n}, Heun', ' u {n}, R.−K. 4');� �
We observe that the numerical approximation by means of the RK4 method is representing
well the exact solution y(t) already for Nh = 30, better than the Heun and forward Euler
methods do.

c) We recall that the forward Euler method has convergence order 1, while the Heun and RK4

2

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

t

y

Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 me

yex(t)
un, F.E.
un, Heun
un, R . -K. 4

Figure 1: Numerical approximations by the forward Euler, Heun, and RK4 methods for y′ =
f(t, y(t)) and Nh = 30.

methods are of orders 2 and 4, respectively, assuming y(t) to be “sufficiently” regular. In this
case, for the setup considered at point b), we have y(t) ∈ C∞(I). In order to graphically verify
the convergence orders, we compare the errors with the curves (h, h), (h, h2), and (h, h4). We
consider the following MATLAB commands:

�
errv n forward euler = [];
errv n heun = [];
errv n runge kutta 4 = [];
Nhv = [30 60 120 240 480 960];
hv = (tf − t0) ./ Nhv;
t bar = 10;
for Nh = Nhv

h = (tf − t0) / Nh; % h
n = (t bar − t0) / h; % step n varies with Nh
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv runge kutta 4] = runge kutta 4(fun, y0, t0, tf, Nh);
% notice that vector index starts from 1 in Matlab
% while n from zero, n = 0,1,...
errv n forward euler = [errv n forward euler, ...

abs(y ex(t bar) − uv forward euler(n + 1))];
errv n heun = [errv n heun, ...

abs(y ex(t bar) − uv heun(n + 1))];
errv n runge kutta 4 = [errv n runge kutta 4, ...

abs(y ex(t bar) − uv runge kutta 4(n + 1))];
end
% scale factors for visualization of the curves (h,h), (h,hˆ2), (h,hˆ4)
scale factor 1 = 2 * errv n forward euler(end) / hv(end);
scale factor 2 = 2 * errv n heun(end) / hv(end)ˆ2;
scale factor 3 = 2 * errv n runge kutta 4(end) / hv(end)ˆ4;
figure;
loglog(hv, errv n forward euler, '−xb', hv, errv n heun, '−or', ...

hv, errv n runge kutta 4, '−dg', ...
hv, scale factor 1 * hv, '−−k', hv, scale factor 2 * hv.ˆ2, '.−k',...

3

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

e
n

Model problem, Errors F.E. , B.E. , H. , R . -K.4. methods

en, F.E.
un, Heun
en, R .K.4
h
h2

h4

Figure 2: Errors for the forward Euler, Heun, and RK4 methods vs h for y′ = f(t, y(t)).

hv, scale factor 3 * hv.ˆ4, ':k');
grid; axis([2e−2 2 1e−10 1e0])
legend(' e {n}, F.E.',' u {n}, Heun', ' e {n}, R.K.4', ...

' h', ' hˆ2', ' hˆ4');� �
We obtain the results in Fig. 2. The curves of the errors are parallel (in logarithmic scales)
to the curves (h, h), (h, h2), and (h, h4) for the forward Euler, Heun, and RK4 methods,
respectively. Hence, the results confirm the convergence orders expected from the theory.

Alternatively, the convergence order of the methods can be estimated e.g. by means of the
following MATLAB commands for h “sufficiently” small, since en ≤ C hp for a general method.

�
conv ord Forward Euler = log(errv n forward euler(end−1) / ...

errv n forward euler(end)) / ...
log(hv(end−1) / hv(end))

% conv ord Forward Euler =
% 0.9996� �
We obtain that the estimated convergence order for the forward Euler method is pFE = 0.9996.
Similarly, for the Heun method we obtain the convergence order pH = 1.9971, while for RK4
we have pRK4 = 3.9618, as expected.

d) We consider the following MATLAB commands to obtain the results in Fig. 3 (left):

�
t0 = 0; tf = 40;
lambda = −0.525; y0 = 1;
fun = @(t, y) lambda * y;
Nh = 10; % or 11
[tv, uv forward euler] = forward euler(fun, y0, t0, tf, Nh);
[tv, uv heun] = heun(fun, y0, t0, tf, Nh);
[tv, uv runge kutta 4] = runge kutta 4(fun, y0, t0, tf, Nh);
tv plot = linspace(t0, tf, 5001);
y ex = @(t) y0 * exp(lambda * (t − t0));
figure;

4

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y
Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 me

yex(t)
un, F.E.
un, Heun
un, R . -K.4

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

y

Cauchy problem, Forward Euler, Heun methods, Runge-Kutta 4 me

yex(t)
un, F.E.
un, Heun
un, R . -K.4

Nh = 10 Nh = 11

Figure 3: Model problem solved with the forward Euler, Heun, and RK4 methods.

plot(tv plot, y ex(tv plot), '−k', tv, uv forward euler, '.−b', ...
tv, uv heun, '.−r', tv, uv runge kutta 4, '.−g');

grid; axis([−0.1+t0 tf+0.1 −1.5 2.5]);
legend(' y {ex}(t)', ' u {n}, F.E.', ' u {n}, Heun', ...

' u {n}, R.−K.4', 'Location', 'NorthEast');� �
We deduce from Fig. 3 that for, Nh = 10 (i.e. for h =

tf−t0
Nh

= 4), the forward Euler and Heun
methods are not absolutely stable, while the RK4 method is. In particular, for λ < 0, we have
that the forward Euler and Heun methods are absolutely stable for 0 < h < hFE,H

max = 2
|λ| ,

while the RK4 method for 0 < h < hRK4
max ≃ 2.7853

|λ| . For the model problem under consideration

we have λ = −0.525, so that hFE,H
max = 3.8095 and hRK4

max = 5.3053. Since, h = 4 > hFE,H
max ,

the forward Euler and Heun methods are not abolutely stable, while the RK4 method is. In
order to recover the absolute stability for all the methods, we calculate N

hFE,H
max

as the smallest

integer larger than
tf−t0

hFE,H
max

: N
hFE,H
max

= 11. We use the following MATLAB commands:

�
h max FE H = 2 / abs(lambda)
% h max FE H =
% 3.8095
N h max FE H = ceil((tf − t0) / h max FE H)
% N h max FE H =
% 11
h max RK4 = 2.7853 / abs(lambda)
% h max RK4 =
% 5.3053
N h max RK4 = ceil((tf − t0) / h max RK4)
% N h max RK4 =
% 8� �
We report in Fig. 3 (right) the numerical solutions obtained for Nh = 11. We verify that
all methods are absolutely stable since the condition h < hmax is satisfied in all cases. We

5

remark that, for Nh < NhRK4
max

= 8, all methods would provide (absolutely) unstable numerical
solutions.

Exercise III (MATLAB)

a) We consider the following implementation of the MATLAB function
forward euler system.m:

�
function [tv, uv] = forward euler system(fun, y0, t0, tf, Nh)
% FORWARD EULER SYSTEM Forward Euler method for solving a system of ODEs
% in the form:
% y'(t) = F(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% y, y 0 are vectors of size (m x 1)
%
% [tv, uv] = forward euler system(fun, y0, t0, tf, Nh)
% Inputs: fun = function handle for F(t,y), fun = @(t,y) ...
% a vector of size (m x 1) must be returned by fun
% y0 = initial vector of size (m x 1)
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = matrix of the approximate solution at times tv
% size (m x (Nh+1))

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

m = length(y0);
uv = zeros(m, Nh + 1);
uv(:, 1) = y0;

for n = 1 : Nh
uv(:, n + 1) = uv(:, n) + h * fun(tv(n), uv(:, n));

end

return� �
b) We implement the MATLAB function backward euler system nhcc.m as:

�
function [tv, uv] = backward euler system nhcc(A, g, y0, t0, tf, Nh)
% BACKWARD EULER SYSTEM NHCC Backward Euler method for solving a system of
% ODEs in the nonhomogeneous with constant coefficients form:
% y'(t) = A y(t) + g(t), t \in (t0,tf)
% y(0) = y 0
%
% y, y 0 are vectors of size (m x 1)
%
% [tv, uv] = backward euler system nhcc(A, g, y0, t0, tf, Nh)
% Inputs: A = square matrix of size (m x m)
% g = function handle for g(t), g = @(t) ...
% a vector of size (m x 1) must be returned by g

6

% y0 = initial vector of size (m x 1)
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = matrix of the approximate solution at times tv
% size (m x (Nh+1))

tv = linspace(t0, tf, Nh + 1);
h = (tf − t0) / Nh;

m = length(y0);
uv = zeros(m, Nh + 1);
uv(:, 1) = y0;

I = speye(m, m);
M = (I − h * A);

for n = 1 : Nh
uv(:, n + 1) = M \ (uv(:, n) + h * g(tv(n + 1)));

end

return� �
c) We solve the problem by using the following MATLAB commands to obtain the results in

Fig. 4.

�
t0 = 0; tf = 5;
y0 = [1; 0.6];
A = − [3 1; 1 1];
g = @(t) [0; 0] * t;
fun = @(t, y) A * y;
Nh = 25; % 8 % 9

[tv, uv forward euler] = forward euler system(fun, y0, t0, tf, Nh);
figure;
plot(tv, uv forward euler(1, :), '.−b', ...

tv, uv forward euler(2, :), '.−r');
grid; axis([−0.1+t0 tf+0.1 −1 1.25]);
title('System of ODEs, Forward Euler');
legend('y(1)','y(2)','Location','NorthEast');

[tv, uv backward euler] = backward euler system nhcc(A, g, y0, t0, tf, Nh);
figure;
plot(tv, uv backward euler(1, :), '.−b', ...

tv, uv backward euler(2, :), '.−r');
grid; axis([−0.1+t0 tf+0.1 −1 1.25]);
title('System of ODEs, Backward Euler');
legend('y(1)','y(2)','Location','NorthEast');� �
The results show that, as expected, both components of the solution tend to zero for t “suffi-
ciently” large for both forward and backward methods.

d) We repeat point c) by considering Nh = 8. We obtain the results in Fig. 5. We observe that
the numerical solution obtained with the forward Euler method is (absolutely) unstable, while
that obtained with the backward Euler method is absolutely stable.

7

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y
System of ODEs, Forward Euler

y(1)
y(2)

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y

System of ODEs, Backward Euler

y(1)
y(2)

Figure 4: Numerical approximation of the system of ODEs y′(t) = F(t,y(t)) = Ay(t) with y(t0) =
y0; components of the numerical solution un vs. t obtained with the forward Euler method (left)
and backward Euler method (right) for Nh = 25.

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y

System of ODEs, Forward Euler

y(1)
y(2)

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y

System of ODEs, Backward Euler

y(1)
y(2)

Forward Euler Backward Euler

Figure 5: Numerical approximation of the system of ODEs y′(t) = F(t,y(t)) = Ay(t) with y(t0) =
y0; components of the numerical solution un vs. t obtained with the forward Euler method (left)
and backward Euler method (right) for Nh = 8.

The result was expected, since the backward Euler method is unconditionally absolutely stable,
while the forward Euler method is only conditionally stable. In particular, since the system of
ODEs is in the form y′(t) = Ay(t), the stability condition on the step size h for the forward
Euler method depends on the eigenvalues of the matrix A ∈ Cm×m. If all the eigenvalues of A
are real and negative, we have the following stability condition for the forward Euler method
(and also for the Heun method): 0 < h < hmax = 2

maxi,...,m|λi(A)| .

By using the following MATLAB commands we verify that the eigenvalues of A are real and

8

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y
System of ODEs, Forward Euler

y(1)
y(2)

0 1 2 3 4 5
−1

−0.5

0

0.5

1

t

y

System of ODEs, Backward Euler

y(1)
y(2)

Forward Euler Backward Euler

Figure 6: Numerical approximation of the system of ODEs y′(t) = F(t,y(t)) = Ay(t) with y(t0) =
y0; components of the numerical solution un vs. t obtained with the forward Euler method (left)
and backward Euler method (right) for Nh = 9.

negative, so that the condition above applies: h < 0.5858, which corresponds to Nh ≥ Nhmax =
9.

�
lambda = (eig(A))'
% lambda =
% −3.4142 −0.5858
h max = 2 / max(abs(lambda))
% h max =
% 0.5858
N h max = ceil((tf − t0) / h max)
% N h max =
% 9� �
We report in Fig. 6 the results obtained for Nh = 9. We verify that, in this case, the forward
Euler method is also absolutely stable, since 0 < h < hmax.

9

