
Numerical Analysis and Computational Mathematics

Fall Semester 2024 – CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 8 – November 6, 2024

Numerical integration & Linear systems: direct
methods

Exercise I (MATLAB)

Consider a function f : [a, b] → R, with f ∈ C0([a, b]), whose integral is I(f) =
∫ b
a f(x) dx. The

approximation of I(f) by means of a simple interpolatory formula reads:

Iapprox(f) =
n∑

j=0

αj f(yj),

where αj are the quadrature weights and yj the quadrature nodes, with j = 0, . . . , n. The type of
polynomial approximation of the function f(x) in [a, b] determines the specific quadrature formula.
We observe that such formulas are typically defined on the reference interval [a, b] = [−1, 1] where
the quadrature nodes yj and the weights αj are assigned. Then, the quadrature nodes and weights
corresponding to the generic interval [a, b] are obtained as:

yj =
a+ b

2
+

b− a

2
yj , αj =

b− a

2
αj , for j = 0, . . . , n.

The (simple) Gauss-Legendre quadrature formulas constitute a family of interpolatory formulas,
each one specified by n, where n + 1 is the number of quadrature nodes and weights. The Gauss-
Legendre quadrature formula for n ≥ 0 has degree of exactness equal to 2n + 1. The quadrature
nodes and weights for some of the Gauss-Legendre quadrature formulas on the reference interval
[a, b] = [−1, 1] are:

n {yj} {αj}

0 {0} {2}

1
{
− 1√

3
, + 1√

3

}
{1, 1}

2
{
−

√
15
5 , 0, +

√
15
5

} {
5
9 ,

8
9 ,

5
9

}
a) Write the MATLAB function gauss legendre simple quadrature.m that implements

the approximation of I(f) by means of the simple Gauss-Legendre quadrature formula for
n = 0, 1, 2. Use the template gauss legendre simple quadrature template.m.

1

�
function [Ih] = gauss legendre simple quadrature(fun, a, b, n)
% GAUSS LEGENDRE SIMPLE QUADRATURE approximate the integral of a function in
% the interval [a,b] by means of the simple Gauss−Legendre quadrature formula
% [Ih] = gauss legendre simple quadrature(fun, a, b, n)
% Inputs: fun = function handle,
% a,b = extrema of the interval [a,b]
% n + 1 = number of quadrature nodes and weights
% Output: Ih = approximate value of the integral
%
...
return� �

b) Consider the function f(x) = sin(72x) + ex − 1 with a = 0 and b = 1, for which I(f) =
2/7 (1−cos(7/2))+e−2. Use the MATLAB function implemented at point a) to approximate
the integral I(f) by means of the simple Gauss-Legendre formulas, for n = 0, 1, 2.

c) We set f(x) = xd, a = 0, and b = 1, with d ∈ N, so that I(f) = 1/(d + 1). By using the
MATLAB function implemented at point a), verify the degrees of exactness of the Gauss-
Legendre formulas for n = 0, 1, 2, by approximating the integral I(f) for different values of d.
Then, compare the results with the approximated values of the integrals obtained by means
of the simple midpoint, trapezoidal, and Simpson quadrature formulas, using the MATLAB
functions from Series 7.

Exercise II (Theoretical)

Prove that, on the reference interval I = [−1, 1], the Gauss-Legendre formula for n = 1 has degree
of exactness r = 3. i.e. IGL,1(f) = I(f) for all f ∈ P3.

Exercise III (MATLAB)

Consider the linear system Ax = b with A ∈ Rn×n, x, b ∈ Rn, with n ≥ 1. We are interested in
computing the solution vector x by means of the LU factorization method.

a) Write the MATLAB functions {forward,backward} substitutions.m, which imple-
ment the forward and backward substitutions algorithms, respectively. The forward substi-
tution algorithm should solve the linear system Ly = b, with L ∈ Rn×n a lower triangular
matrix and y ∈ Rn. The backward substitution algorithm should solve the linear system
Ux = y, with U ∈ Rn×n an upper triangular matrix. Use the templates
{forward,backward} substitutions template.m:

�
function [y] = forward substitutions(L, b)
% FORWARD SUBSTITUTIONS solve the linear system L y = b by means of the
% forward subsitutions algorithm; L must be a lower triangular matrix
% [y] = forward substitutions(L, b)
% Inputs: L = lower triangular matrix (square matrix)
% b = vector (right hand side of the linear system)
% Output: y = solution vector (column vector)
%
...
return� �

2

�
function [x] = backward substitutions(U, y)
% BACKWARD SUBSTITUTIONS solve the linear system U x = y by means of the
% backward subsitutions algorithm; U must be an upper triangular matrix
% [x] = backward substitutions(U, y)
% Inputs: U = upper triangular matrix (square matrix)
% y = vector (right hand side of the linear system)
% Output: x = solution vector (column vector)
%
...
return� �

b) For n = 3, define the linear system Ax = b by setting

A =

 4 −2 −1
−1 3 −1
−1 −3 5

 ,

and by assigning a priori the exact solution

xex =

 1
1
1

 : b = Axex.

Solve the linear system by means of the LU factorization method using the MATLAB functions
implemented at point a). In order to obtain the LU factorization of the matrix A, use the
MATLAB function lu with the syntax [L,U,P]=lu(A) (see help lu). Note that the
MATLAB function lu returns by default the LU factorization with pivoting even when not
strictly required. Compare the result x and the exact solution xex by computing the error
norm ∥x − xex∥2. Verify whether the pivoting technique has been applied by displaying the
permutation matrix P .

c) Consider the following matrix A ∈ Rn×n and vectors xex, b ∈ Rn:

A =



4 −1 0 · · · 0 1
−2 4 −1 0 · · · 0 0
−1 −2 4 −1 0 · · · 0
0 −1 −2 4 −1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 −2 4 −1 0
0 0 · · · 0 −1 −2 4 −1

−1 0 · · · 0 −1 −2 4



, xex =

 1
...
1

 , b = Axex.

Set n = 20 and use the MATLAB function diag to define the matrix A. Then, repeat point
b). In particular, visualize matrices A, L, and U by means of the MATLAB function spy.

d) Consider the matrix A introduced at point c), with n = 1000. Define the matrix A in
MATLAB in the full format (as done at point c)) and in sparse format. In the latter case you
can use the MATLAB function sparse. Compare the memory required to store in MATLAB
the matrix A in the full and sparse formats by using the command whos.

3

e) With the notation of point b), consider the linear system Ax = b, with:

A =

 4 −2 −1
−2 7 −4
−1 −4 6

 , xex =

 1
1
1

 , b = Axex.

The matrix A is symmetric and positive definite. Solve the linear system by means of the
Cholesky factorization method using the MATLAB functions implemented at point a). In
order to obtain the Cholesky factorization of the matrix A, use the MATLAB function chol.
Compare the result x and the exact solution xex by computing the error norm ∥x− xex∥2.

Exercise IV (Theoretical)

Consider the following matrix A ∈ R3×3, which depends on the parameter α ∈ R:

A =

 1 α −1
α 35

3 1
−1 α 2

 .

a) Calculate the values of the parameter α ∈ R for which the matrix A is invertible.

b) Without using pivoting, calculate the Gauss factorization of the matrix A (when non-singular)
for a generic value of the parameter α ∈ R. In particular, identify the values of the parameter
α ∈ R for which the Gauss factorization (without pivoting) of the matrix A (when non-
singular) exists and is unique.

c) Use the pivoting technique to calculate the Gauss factorization LU of the matrix A in the

case α =
√

35
3 .

d) For α = 1, the matrix A is symmetric and positive definite. Calculate the corresponding
Cholesky factor of the matrix A, i.e. the upper triangular matrix R (with positive elements
on the diagonal), such that A = RTR.

4

