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Approximation of functions and data

Exercise I (MATLAB)

Consider a digital measuring instrument that samples a signal expressed by the function g(x) for
x ∈ I = [a, b] = [0, 1], where g(x) = 10x2. The output of the instrument is affected by noise and
can be represented by a function f(x) = g(x) + ε(x), where |ε(x)| ≤ 1. In MATLAB, we consider
the following commands:

�
g = @(x) 10 * x.ˆ2; % True signal
f = @(x) g(x) + 2*rand(size(x))−1; % Instrument output� �
The noise ε(x) is represented by the command 2*rand(size(x))−1, which returns a random
vector (with values in [−1, 1]) of the same size as x. Note that the function f returns a different
realization each time (even if the variable x is the same).

a) Compute the polynomial Πnf(x) for n = 9, interpolating f(x) at n+1 uniformly spaced nodes
over I by using the MATLAB functions polyfit and polyval. Then, by using the same
nodes, compute the least-squares polynomial f̃m(x) of degree m = 2 approximating f(x). Plot
in the same figure the functions f(x), g(x), and the polynomials Πnf(x) and f̃m(x). Which
method produces better representations of the original signal?

b) Use the polynomials Π9f(x) and f̃2(x) to extrapolate the value of f(x) at x = 2. Compare
and discuss the results obtained.

c) Due to the noise, repeating of the measurement typically yields a different signal f(x). In
MATLAB, at each call of the function f, we obtain different values due to the use of the
function rand. In this way, we can study the stability of the polynomials Πnf(x) and f̃m(x)
by analyzing the variations in the results using different sets of data points {(xi, f(xi))}9i=0.
Repeat the points a) and b) several times and discuss the results obtained.

Exercise II (MATLAB)

Consider the function f(x) = e−x2/2 over the interval I = [a, b] = [−5, 5].
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a) Using the MATLAB function interp1, compute and plot the piecewise linear interpolants
ΠH

1 f(x) on n uniform sub-intervals of size H = b−a
n , for n = 2, 7, 12, 22, 27, 32. Compare

graphically the interpolating functions with f(x).

b) Following point a), compute the errors eH1 (f) := maxx∈I |f(x)−ΠH
1 f(x)| corresponding to the

piecewise linear interpolants ΠHn
1 f(x) for n = 2, 3, . . . , 32 uniform sub-intervals of size Hn.

Plot eHn
1 (f) vs. n. Motivate the result obtained.

c) The not-a-knot interpolating cubic spline s3(x) can be computed in MATLAB by using the
command spline (see help spline). Compute the spline s3(x) approximating f(x) by
subdividing the interval I in n = 7 uniform sub-intervals. Compare it graphically with
f(x) and with the piecewise linear interpolant ΠH

1 f(x). Finally, plot the errors es3(f) :=
maxx∈I |f(x)− s3(x)| as a function of n for n = 2, 3, . . . , 32.

Exercise III (Theoretical)

Consider the function f(x) = 1
1+x over the interval I = [a, b] = [0, 5].

a) We consider the piecewise linear interpolant ΠH
1 f(x) over n uniform sub-intervals of size

H = b−a
n . Compute the minimum number n such that the error associated to ΠH

1 f(x) is
smaller than 10−3.

b) Repeat point a) by considering the natural interpolating cubic spline s3(x). To this aim, recall
that, for f ∈ C4(I),

max
x∈I

∣∣∣f (r)(x)− s
(r)
3 (x)

∣∣∣ ≤ CrH
4−r max

x∈I

∣∣∣f (4)(x)
∣∣∣ , for r = 0, 1, 2,

for some positive constants Cr depending on r. For simplicity, you may assume that Cr ≃ 1.

What is the minimum number of uniform sub-intervals that ensures that the error associated
to the first derivative of s3(x) is smaller than 10−3?

c) Consider the nodes x0 = 0, x1 = 1/2, x2 = 1. Calculate the least-squares degree-1 polynomial
f̃1(x) = a0 + a1x that approximates f(x) at such nodes. To this aim, you should find the
coefficients a0 and a1 that minimize the discrete interpolation error:

Φ(a0, a1) =

2∑
i=0

[f(xi)− f̃1(xi)]
2 =

2∑
i=0

[f(xi)− a0 − a1xi]
2.

Exercise IV (MATLAB)

The left ventricle is the chamber of the heart responsible for pumping oxygenated blood into the
major organs. We have obtained a time series of n+1 = 11 data points {(tj , Vj)}nj=0 describing the

volume Vj (in cm3) of a left ventricle at time tj (in s):

j 0 1 2 3 4 5 6 7 8 9 10

tj [s] 0.00 0.07 0.14 0.21 0.28 0.35 0.42 0.49 0.56 0.63 0.70

Vj [cm3] 194 184 177 156 142 160 168 166 170 178 187
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We wish to find an interpolating curve ItV (t) that describes the volume V (t) of the left ventricle
as it contracts during the heartbeat. Since the volume of the ventricle V (t) can be considered as a
periodic function of the time t with period T equal to the length of the heartbeat (here T = 0.77
s), we decide to use trigonometric interpolation.

a) By using the MATLAB command interpft, interpolate the data points by means of trigono-
metric interpolation and evaluate the interpolant on 1100 uniformly spaced points. Plot the
data points and the trigonometric interpolant ItV (t) on the same figure. Then, by using the
trigonometric interpolant ItV (t), evaluate the ejection fraction (percentage of volume of blood
ejected during one heartbeat) defined by the formula:

Ef =

max
t∈[0,T ]

ItV (t)− min
t∈[0,T ]

ItV (t)

max
t∈[0,T ]

ItV (t)
.

b) We observe that in a real ventricle the volume V (t) first decreases monotonically during the
contraction of the muscle (for t ∈ [0, 0.3] s) and then increases monotonically during the
relaxation of the muscle (for t ∈ (0.3, 0.77] s) due to the presence of two valves that block the
flow in the wrong direction. This property is not satisfied by the interpolant ItV (t) due to the
presence of the erroneous data point (t7, V7) = (0.49, 166), which is probably a consequence of
measurement error. In trigonometric interpolation, we assume that the nodes are uniformly
spaced, so that we cannot simply remove the bad data point (t7, V7) from the data set. Instead,
we define a new series of data points {(tj , Ṽj)}nj=0 by replacing the erroneous value with the
average of its two nearest neighbors:

Ṽj :=

{
Vj if j ̸= 7,
Vj−1+Vj+1

2 if j = 7.

Compute the corrected trigonometric interpolant ItṼ (t), evaluate the interpolant at 1100
equally spaced points, and plot it in the same figure as ItV (t). Compute also the new estimated
ejection fraction

Ẽf =

max
t∈[0,T ]

ItṼ (t)− min
t∈[0,T ]

ItṼ (t)

max
t∈[0,T ]

ItṼ (t)
.

Are the results considerably different from those from a)?

Exercise V (Theoretical)

Consider B ∈ Rn×m, y ∈ Rn, and a ∈ Rm, with m < n, defining the linear system

Ba = y.

Show that the least-square solution ã ∈ Rm satisfies the normal equations

BTBã = BTy.
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