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Approximation of functions and data

Exercise I (MATLAB, tutorial)
For any set of (x, y)-pairs {(xi, yi)}ni=0 such that xi ̸= xj when i ̸= j, we can compute and evaluate
the interpolating polynomial or a least-squares approximating polynomial by using the MATLAB
commands polyfit and polyval.

Example 1: Let us consider the data set

i 0 1 2 3 4

xi 0 0.25 0.5 0.75 1
yi 3.38 3.86 3.85 3.59 3.49

The coefficients of the interpolating polynomial of degree n = 4 are computed using the
following commands:

�
x nodes = [0:0.25:1];
y nodes = [3.38 3.86 3.85 3.59 3.49];
P = polyfit( x nodes, y nodes, 4 ) % Coefficients of the L. polynomial
% P = 1.8133 −0.1600 −4.5933 3.0500 3.3800� �
where P is a vector containing the coefficients of the polynomial Π4(x) = 1.8133x4 − 0.16x3 −
4.5933x2 + 3.05x+ 3.38. Given any vector of points x values, we correspondingly evaluate
the polynomial using the command P values = polyval( P, x values ), e.g.:

�
% polynomial value in a single point
x value = 0.4;
P value = polyval( P, x value ) % value of the polynomial at point x value
% P value =
% 3.9012

% polynomial values in multiple points
x values = linspace( 0, 1, 1001); % 1001 equispaced points between 0 and 1
P values = polyval( P, x values ); % values of the polynomial at points x values
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plot( x values, P values ) % plot the interpolating polynomial� �
Example 2: To compute the interpolating polynomial of degree n of an arbitrary continuous func-

tion f(x) we have to define a set of n+ 1 data points {(xi, f(xi))}ni=0, with xi distinct nodes.
For instance, for f(x) = cos(x), n = 4, and n + 1 = 5 nodes uniformly distributed over
I = [a, b] = [0, 1], we execute the following commands:

�
f = @(x) cos(x); a=0; b=1;
n = 4;
x nodes = linspace( a, b, n +1 );
y nodes = f(x nodes);
P = polyfit( x nodes, y nodes, n )
% P =
% 0.0362 0.0063 −0.5025 0.0003 1.0000� �
Remark: If the length of x nodes (and y nodes) is larger than n+1 (where n is the degree of
desired interpolating polynomial) the command polyfit(x nodes, y nodes, n) returns
the least-squares approximating polynomial of degree n.

Example 3: Let us interpolate the function f(x) = sin(x) + x at n + 1 = 2, 3, . . . , 6 uniformly
distributed nodes in I = [0, 3π] by means of interpolating polynomials Πnf(x) of degree n; we
use the following commands:

�
f = @(x) sin(x) + x; a=0; b=3*pi;
x values = linspace(a,b,1001);
plot( x values, f(x values), 'b' );
hold on
for n = 1:5

x nodes = linspace( a, b, n+1 );
P = polyfit( x nodes, f(x nodes), n );
plot( x values, polyval( P, x values ), '−−b' )

end� �
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Exercise II (MATLAB)
Consider the function f(x) = sin(x) on the interval I = [a, b] = [0, 3π].

a) By distributing the n + 1 nodes uniformly over the interval I, compute the interpolating
polynomial Πnf of the function f(x) for n = 1, . . . , 7, where n is the degree of the polynomial.
Compare the results obtained with the analytical expression of f(x). (Hint : plot Πnf and
f(x) on the same figure using at least 1001 evaluation points.)

b) Compute the true errors en(f):

en(f) := max
x∈I

|Enf(x)|, with Enf(x) := f(x)−Πnf(x),

for n = 1, . . . , 7. Plot them in a figure as a function of n, and comment the result. (Hint :
instead of the maximum over I, compute the maximum over a fine grid in I.)

c) We recall that, in the case of interpolating polynomials of functions f(x) ∈ Cn+1(I) at uni-
formly spaced nodes, the true errors en(f) can be bounded as

en(f) ≤ ẽn(f), where ẽn(f) :=
1

4(n+ 1)

(
b− a

n

)n+1

max
x∈I

∣∣f (n+1)(x)
∣∣.

Plot the error estimators ẽn(f) vs. the degree n. Compare the plot with that of point b), and
verify the validity of the bound above.

Exercise III (Theoretical)
Consider the function f(x) = −x3 + 3x2 − 2 with x ∈ I = [0, 2].

a) Compute the quadratic interpolating polynomial Π2f(x) at the nodes x0 = 0, x1 = 1
2 , and

x2 = 2. Provide the expressions of the Lagrange characteristic functions.

b) Repeat point a) with x1 = 1 and motivate the result obtained.

c) Compute the cubic interpolating polynomial Π3f(x) at the nodes x0 = 0, x1 = e−
√
2, x2 =

3e−
√

1/2 and x3 = 2.

Exercise IV (MATLAB)

Consider the Runge function f(x) =
1

1 + x2
over the interval I = [a, b] = [−5, 5].

a) By distributing the nodes uniformly over I, use MATLAB to compute and plot the interpo-
lating polynomials Πnf(x) for degrees n = 2, 4, 8, and 12. Compare the results with the plot
of the function f(x).

b) Compute the “true” errors en(f) := maxx∈I |f(x)− Πnf(x)| for n = 2, 4, 8, and 12, and plot
them vs. the degree n. Is the error decreasing when n increases? Motivate the answer.

c) Repeat point a) by using the Chebyshev-Gauss-Lobatto distribution of the nodes in I. In this
case the n+ 1 nodes xi are obtained as:

xi =
a+ b

2
+

b− a

2
x̂i, where x̂i = − cos

(
π
i

n

)
, i = 0, . . . , n.

For n = 8, compare the interpolating polynomial with the corresponding polynomial obtained
at point a).
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d) Repeat point b) by using the Chebyshev-Gauss-Lobatto distribution of the nodes in I obtained
at point c) and motivate the results obtained.

Exercise V (Theoretical)
Consider the function f(x) = sin

(
x
3

)
over the interval I = [a, b] = [0, 1].

a) Let Πnf(x) be the interpolating polynomial of f(x) at n + 1 uniformly spaced nodes {a =
x0, x1, . . . , xn = b}. Provide an estimate ẽn(f) of the interpolation error en(f) := maxx∈I |f(x)−
Πnf(x)| over the interval I, as a function of the degree n. Study the limit of ẽn(f) for n → ∞.

b) Find the minimum number of uniformly spaced nodes over I that guarantee that en(f) < 10−4.
(Hint : try increasing values of n until the condition is satisfied).

c) Consider the polynomial interpolation at the Chebyshev-Gauss-Lobatto nodes. Compute the
first four Chebyshev-Gauss-Lobatto nodes x0, x1, x2, x3 over the interval I.

d) We define the nodal polynomial ωn(x) :=
∏n

i=0(x − xi), with {xi}ni=0 the nodes used for the
interpolation. We set n = 3 and we use the Chebyshev-Gauss-Lobatto nodes obtained at point
c). We show in Figure 1 the plot of |ω3| over I. Use the plot to estimate the interpolation
error en(f) corresponding to the Chebyshev-Gauss-Lobatto nodes over I.
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Figure 1: Function |ω3(x)| in the interval I.
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