

Numerical Analysis and Computational Mathematics

Fall Semester 2024 - CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 5 – October 9, 2024

Approximation of functions and data

Exercise I (MATLAB, tutorial)

For any set of (x, y)-pairs $\{(x_i, y_i)\}_{i=0}^n$ such that $x_i \neq x_j$ when $i \neq j$, we can compute and evaluate the *interpolating polynomial* or a *least-squares approximating polynomial* by using the MATLAB commands polyfit and polyval.

Example 1: Let us consider the data set

The coefficients of the interpolating polynomial of degree n=4 are computed using the following commands:

where P is a vector containing the coefficients of the polynomial $\Pi_4(x) = 1.8133x^4 - 0.16x^3 - 4.5933x^2 + 3.05x + 3.38$. Given any vector of points x_values, we correspondingly evaluate the polynomial using the command P_values = polyval(P, x_values), e.g.:

```
% polynomial value in a single point
x_value = 0.4;
P_value = polyval( P, x_value )  % value of the polynomial at point x_value
% P_value =
%     3.9012
% polynomial values in multiple points
x_values = linspace( 0, 1, 1001); % 1001 equispaced points between 0 and 1
P_values = polyval( P, x_values ); % values of the polynomial at points x_values
```

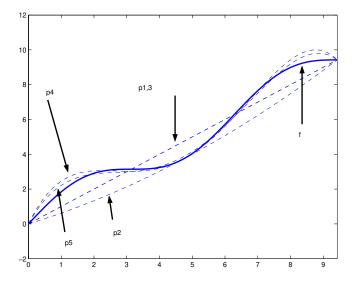
Example 2: To compute the interpolating polynomial of degree n of an arbitrary continuous function f(x) we have to define a set of n+1 data points $\{(x_i, f(x_i))\}_{i=0}^n$, with x_i distinct nodes. For instance, for $f(x) = \cos(x)$, n = 4, and n + 1 = 5 nodes uniformly distributed over I = [a, b] = [0, 1], we execute the following commands:

```
f = @(x) cos(x); a=0; b=1;
n = 4;
x_nodes = linspace(a, b, n +1);
y_nodes = f(x_nodes);
P = polyfit(x_nodes, y_nodes, n)
% P =
% 0.0362 0.0063 -0.5025 0.0003 1.0000
```

Remark: If the length of x_nodes (and y_nodes) is larger than n+1 (where n is the degree of desired interpolating polynomial) the command polyfit (x_nodes, y_nodes, n) returns the least-squares approximating polynomial of degree n.

Example 3: Let us interpolate the function $f(x) = \sin(x) + x$ at n + 1 = 2, 3, ..., 6 uniformly distributed nodes in $I = [0, 3\pi]$ by means of interpolating polynomials $\Pi_n f(x)$ of degree n; we use the following commands:

```
f = @(x) sin(x) + x; a=0; b=3*pi;
x_values = linspace(a,b,1001);
plot(x_values, f(x_values), 'b');
hold on
for n = 1:5
    x_nodes = linspace(a, b, n+1);
    P = polyfit(x_nodes, f(x_nodes), n);
    plot(x_values, polyval(P, x_values), '--b')
end
```



Exercise II (MATLAB)

Consider the function $f(x) = \sin(x)$ on the interval $I = [a, b] = [0, 3\pi]$.

- a) By distributing the n+1 nodes uniformly over the interval I, compute the interpolating polynomial $\Pi_n f$ of the function f(x) for $n=1,\ldots,7$, where n is the degree of the polynomial. Compare the results obtained with the analytical expression of f(x). (*Hint*: plot $\Pi_n f$ and f(x) on the same figure using at least 1001 evaluation points.)
- b) Compute the true errors $e_n(f)$:

$$e_n(f) := \max_{x \in I} |E_n f(x)|, \quad \text{with } E_n f(x) := f(x) - \Pi_n f(x),$$

for n = 1, ..., 7. Plot them in a figure as a function of n, and comment the result. (*Hint*: instead of the maximum over I, compute the maximum over a fine grid in I.)

c) We recall that, in the case of interpolating polynomials of functions $f(x) \in C^{n+1}(I)$ at uniformly spaced nodes, the true errors $e_n(f)$ can be bounded as

$$e_n(f) \le \widetilde{e}_n(f), \quad \text{where } \widetilde{e}_n(f) := \frac{1}{4(n+1)} \left(\frac{b-a}{n}\right)^{n+1} \max_{x \in I} |f^{(n+1)}(x)|.$$

Plot the error estimators $\tilde{e}_n(f)$ vs. the degree n. Compare the plot with that of point b), and verify the validity of the bound above.

Exercise III (Theoretical)

Consider the function $f(x) = -x^3 + 3x^2 - 2$ with $x \in I = [0, 2]$.

- a) Compute the quadratic interpolating polynomial $\Pi_2 f(x)$ at the nodes $x_0 = 0$, $x_1 = \frac{1}{2}$, and $x_2 = 2$. Provide the expressions of the Lagrange characteristic functions.
- b) Repeat point a) with $x_1 = 1$ and motivate the result obtained.
- c) Compute the cubic interpolating polynomial $\Pi_3 f(x)$ at the nodes $x_0 = 0$, $x_1 = e^{-\sqrt{2}}$, $x_2 = 3e^{-\sqrt{1/2}}$ and $x_3 = 2$.

Exercise IV (MATLAB)

Consider the Runge function $f(x) = \frac{1}{1+x^2}$ over the interval I = [a, b] = [-5, 5].

- a) By distributing the nodes uniformly over I, use MATLAB to compute and plot the interpolating polynomials $\Pi_n f(x)$ for degrees n = 2, 4, 8, and 12. Compare the results with the plot of the function f(x).
- b) Compute the "true" errors $e_n(f) := \max_{x \in I} |f(x) \Pi_n f(x)|$ for n = 2, 4, 8, and 12, and plot them vs. the degree n. Is the error decreasing when n increases? Motivate the answer.
- c) Repeat point a) by using the Chebyshev-Gauss-Lobatto distribution of the nodes in I. In this case the n+1 nodes x_i are obtained as:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\hat{x}_i$$
, where $\hat{x}_i = -\cos\left(\pi \frac{i}{n}\right)$, $i = 0, \dots, n$.

For n = 8, compare the interpolating polynomial with the corresponding polynomial obtained at point a).

d) Repeat point b) by using the Chebyshev-Gauss-Lobatto distribution of the nodes in *I* obtained at point c) and motivate the results obtained.

Exercise V (Theoretical)

Consider the function $f(x) = \sin\left(\frac{x}{3}\right)$ over the interval I = [a, b] = [0, 1].

- a) Let $\Pi_n f(x)$ be the interpolating polynomial of f(x) at n+1 uniformly spaced nodes $\{a = x_0, x_1, \ldots, x_n = b\}$. Provide an estimate $\widetilde{e}_n(f)$ of the interpolation error $e_n(f) := \max_{x \in I} |f(x) \Pi_n f(x)|$ over the interval I, as a function of the degree n. Study the limit of $\widetilde{e}_n(f)$ for $n \to \infty$.
- b) Find the minimum number of uniformly spaced nodes over I that guarantee that $e_n(f) < 10^{-4}$. (*Hint*: try increasing values of n until the condition is satisfied).
- c) Consider the polynomial interpolation at the Chebyshev-Gauss-Lobatto nodes. Compute the first four Chebyshev-Gauss-Lobatto nodes x_0, x_1, x_2, x_3 over the interval I.
- d) We define the nodal polynomial $\omega_n(x) := \prod_{i=0}^n (x x_i)$, with $\{x_i\}_{i=0}^n$ the nodes used for the interpolation. We set n=3 and we use the Chebyshev-Gauss-Lobatto nodes obtained at point c). We show in Figure 1 the plot of $|\omega_3|$ over I. Use the plot to estimate the interpolation error $e_n(f)$ corresponding to the Chebyshev-Gauss-Lobatto nodes over I.

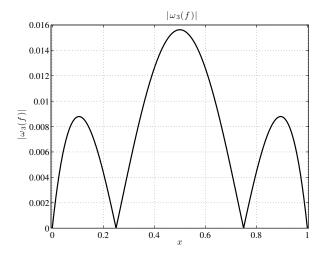


Figure 1: Function $|\omega_3(x)|$ in the interval I.