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Ordinary differential equations

Exercise I (MATLAB)

Consider the system of first order ODEs

find y : I ⊂ R → Rm :

{
y′(t) = F(t,y(t)) for all t ∈ I,
y(t0) = y0,

(1)

where m ≥ 1, I = (t0, tf ) is the integration interval, F : I × Rm → Rm is a given vector-valued
function, and y0 ∈ Rm is the initial datum. To define a Lotka-Volterra prey-predator model for the
dynamics of populations, we set m = 2, y(t) = (y1(t), y2(t))

T , and choose:

F(t,y) =

[
C1 y1 (1− b1 y1 − d2 y2)

−C2 y2 (1− b2 y2 − d1 y1)

]
.

In particular, we select C1 = 0.15, C2 = 0.075, b1 = 0.002, b2 = 0, d1 = 0.0210, d2 = 0.0325, t0 = 0,
tf = 600, and y0 = (55, 20)T . The solution y(t) tends to the equilibrium state yE ≃ (47.62, 27.84)T

for t → ∞.

a) Solve the prey-predator model with the specified data by means of the forward Euler method
implemented in the function forward euler system.m from Series 13. Set Nh = 5000 and
plot the numerical solution vs t.

b) Plot the trajectory of the solution in the phase space (prey-predator).

c) Repeat points a) and b) for y0 = (35, 40)T .

Exercise II (MATLAB)

Consider the 2-dimensional truss bridge introduced in Series 11, and displayed in Fig. 1. This time,
our goal consists in simulating the dynamics of the bridge under the action of external forces.
At any time t, we denote by ui(t) ∈ R2 the displacement vector of each node i = 1, . . . , Nnodes and
by f exti (t) ∈ R2 the external forces acting at the nodes. Elastic internal forces f inti,j (t) ∈ R2 and

damping forces f ci (t) ∈ R2 are also included in the model.
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Figure 1: Truss bridge model.

At each node i, whose mass is mi, Newton’s second law can be expressed as: mia(t) + f ci (t) +∑
j∈Ii f

int
i,j (t) = f exti (t), with Ii := {i− 2, i− 1, i+ 1, i+ 2} ∩ {k}Nnodes

k=1 and ai(t) = u′′
i (t) ∈ R2 is the

acceleration of the node. This can be cast as a second order system of ODEs:

find d(t) : (t0, tf ) ⊂ R → Rm :


M d′′(t) + C d′(t) +K d(t) = b(t) ∀t ∈ (t0, tf ),
d′(t0) = v0,
d(t0) = d0.

(2)
Above,

d = ((u1(t))
T , (u2(t))

T , . . . , (uNnodes
(t))T )T ∈ R2Nnodes

is the unknown solution vector representing the displacements of each node of the bridge. The
matrix K ∈ R2Nnodes×2Nnodes is the “stiffness matrix” and depends on the elastic properties of the
beams by means of the scalar parameter kbeam. The matrix K is sparse, symmetric, and can be
defined via the MATLAB function bridge stiffness matrix.m from Series 11. The matrix
M ∈ R2Nnodes×2Nnodes is the mass matrix, which, in this (“lumped”) case, is just a multiple of the
identity matrix: M = mnode I. The matrix C ∈ R2Nnodes×2Nnodes models the damping forces and is
obtained as C = αM + β K for some scalar parameters α and β.
The vector

b(t) = ((f ext1 (t))T , (f ext2 (t))T , . . . , (f extNnodes
(t))T )T ∈ R2Nnodes

contains the external forces f exti (t) ∈ R2 acting on each node. d0 and v0 ∈ Rm represent the initial
displacement and velocity of the nodes at time t0, respectively.

a) Set Nnodes = 29, kbeam = 103, mnode = 2, and α = β = 0.01. Define the sparse matrices M ,
C, and K.

b) In order to make the structural problem well-posed, we constrain to zero three entries of the
vector d(t), for all times t. As in Series 11, we fix both displacement components of the
leftmost node and the vertical displacement of the rightmost node. This will turn the system
(2) into one of reduced size m̃ = 2Nnodes − 3:

find d̃(t) : (t0, tf ) ⊂ R → Rm̃ :


M̃ d̃′′(t) + C̃ d̃′(t) + K̃ d̃(t) = b̃(t) ∀t ∈ (t0, tf ),

d̃′(t0) = ṽ0,

d̃(t0) = d̃0.

(3)

c) Rewrite (3) as a first order system of ODEs in non-homogeneous form:

find ỹ(t) : (t0, tf ) ⊂ R → R2m̃ :

{
ỹ′(t) = Ã ỹ(t) + g̃(t) ∀t ∈ (t0, tf ),
ỹ(t0) = ỹ0.

(4)
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d) Set t0 = 0, tf = 250, tref = 25, and d0 = v0 = 0. Consider a single vertical external force
f ext15 = (0,−qk(t))

T at the 15th node. We consider 5 different possible options (indexed by k)
for the force magnitude qk:

• q1(t) =

{
t/tref t ≤ tref ,
1 t > tref ,

;

• q2(t) =

{
t/tref t ≤ tref ,
0 t > tref ,

;

• qk(t) = sin(ωk t), with ω3 = 0.25, ω4 = 0.4688, and ω5 = 0.65.

Solve (4) using the backward Euler method via the function backward euler system nhcc.m
from Series 13. Set Nh = 2500. Plot the numerical approximation of the components of the
displacement for the 15th node vs t. Then, use the function plot bridge.m to visualize the
deformation of the bridge in time.
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