

Numerical Analysis and Computational Mathematics

Fall Semester 2024 - CSE Section

Prof. Laura Grigori

Assistant: Israa Fakih

Session 13 – December 11, 2024

Ordinary differential equations

Exercise I (Theoretical)

Discuss the existence and uniqueness of the solution y(t) of the Cauchy problem

find
$$y:[0,\infty)\to\mathbb{R}$$
 :
$$\begin{cases} y'(t)=-\arctan(y) & \text{for all } t>0, \\ y(0)=1, \end{cases}$$
 (1)

Exercise II (MATLAB)

Consider the Cauchy problem

find
$$y: I \subset \mathbb{R} \to \mathbb{R}$$
 :
$$\begin{cases} y'(t) = f(t, y(t)) & \text{for all } t \in I, \\ y(t_0) = y_0, \end{cases}$$
 (2)

where $I = (t_0, t_f)$ is the integration interval, $f : I \times \mathbb{R} \to \mathbb{R}$ is a given continuous function, and $y_0 \in \mathbb{R}$ is the initial datum.

a) Write the MATLAB function runge_kutta_4.m that implements the explicit 4-stage Runge-Kutta method RK4. Use the function runge_kutta_4_template.m as template.

```
function [ tv, uv ] = runge_kutta_4 ( fun, y0, t0, tf, Nh )
% RUNGE_KUTTA_4 Runge-Kutta 4, explicit method for the scalar ODE in the
 y'(t) = f(t,y(t)), t \in (t0,tf) 
% y(0) = y_0
  [ tv, uv ] = runge_kutta_4 ( fun, y0, t0, tf, Nh )
  Inputs: fun = function handle for f(t,y), fun = Q(t,y) ...
          у0
                 = initial value
          t0
                 = initial time
          tf
                 = final time
                 = number of time subintervals
          Nh
                 = vector of time steps (1 \times (Nh+1))
  Output: tv
```

```
% uv = vector of approximate solution at times tv % return
```

- b) Use the functions forward_euler.m, heun.m (from Series 12), and runge_kutta_4.m to solve problem (2) for $f(t,y) = \left(\frac{\cos(t)}{\alpha + \sin(t)} + \beta\right)y$, $y_0 = \alpha$, $t_0 = 0$, $t_f = 30$, $\alpha = 1.5$, and $\beta = -0.2$. Set $N_h = 30$ and compare the numerical solutions with the exact solution $y(t) = (\alpha + \sin(t)) e^{\beta(t-t0)}$.
- c) Compute the errors $e_n^{FE} = |y(t_n) u_n^{FE}|$, $e_n^H = |y(t_n) u_n^H|$, and $e_n^{RK4} = |y(t_n) u_n^{RK4}|$. Select n such that the computed errors correspond to time $\bar{t} = 10$ for increasing values of the number of subintervals $N_h = 30, 60, 120, 240, 480, 960$. Plot the computed errors vs h and graphically deduce the convergence orders of the methods.
- d) Repeat point b) to solve the Cauchy problem corresponding to $f(t, y) = \lambda y$, with $\lambda = -0.525$, $t_0 = 0$, $t_f = 40$, and $y_0 = 1$. Vary the number of subintervals N_h and try to identify empirically which values of h yield (absolutely) stable numerical methods.

Exercise III (MATLAB)

Consider a system of first order ODEs:

find
$$\mathbf{y}: I \subset \mathbb{R} \to \mathbb{R}^m$$
 :
$$\begin{cases} \mathbf{y}'(t) = \mathbf{F}(t, \mathbf{y}(t)) \\ \mathbf{y}(t_0) = \mathbf{y}_0, \end{cases}$$
 for all $t \in I$, (3)

where $m \geq 1$, $I = (t_0, t_f)$ is the integration interval, $\mathbf{F} : I \times \mathbb{R}^m \to \mathbb{R}^m$ is a given vector-valued function, and $\mathbf{y}_0 \in \mathbb{R}^m$ is the initial datum. If \mathbf{F} is of the form

$$\mathbf{F}(t, \mathbf{y}) = A\mathbf{y} + \mathbf{g}(t),\tag{4}$$

for some matrix $A \in \mathbb{R}^{m \times m}$ and a vector-valued function $\mathbf{g}: I \to \mathbb{R}^m$, then the system of ODEs (3) is said to be linear and non-homogeneous with constant coefficients.

a) Write the MATLAB function forward_euler_system.m that implements the forward Euler method for the solution of (3). Use the function forward_euler_system_template.m as template.

```
function [ tv, uv ] = forward_euler_system( fun, y0, t0, tf, Nh )
% FORWARD_EULER_SYSTEM Forward Euler method for solving a system of ODEs
% in the form:
% y'(t) = F(t,y(t)), t \in (t0,tf)
% y(0) = y_0
%
% y, y_0 are vectors of size (m x 1)
%
% [ tv, uv ] = forward_euler_system( fun, y0, t0, tf, Nh )
% Inputs: fun = function handle for F(t,y), fun = @(t,y) ...
% a vector of size (m x 1) must be returned by fun
% y0 = initial vector of size (m x 1)
% t0 = initial time
% tf = final time
```

b) Write the MATLAB function backward_euler_system_nhcc.m that implements the backward Euler method for the solution of a problem (3) that is linear and non-homogeneous with constant coefficients, see (4). Use the function backward_euler_system_nhcc_template.m as template.

```
function [ tv, uv ] = backward_euler_system_nhcc( A, q, y0, t0, tf, Nh )
% BACKWARD_EULER_SYSTEM_NHCC Backward Euler method for solving a system of
% ODEs in the nonhomogeneous with constant coefficients form:
% y(0) = y_0
% y, y_0 are vectors of size (m x 1)
  [tv, uv] = backward_euler_system_nhcc(A, g, y0, t0, tf, Nh)
  Inputs: A
              = square matrix of size (m x m)
                = function handle for g(t), g = Q(t) ...
                  a vector of size (m x 1) must be returned by q
          y0
                = initial vector of size (m x 1)
                 = initial time
                 = final time
          Nh
                = number of time subintervals
                = vector of time steps (1 \times (Nh+1))
  Output: tv
                = matrix of the approximate solution at times tv
          uv
                  size (m \times (Nh+1))
return
```

- c) Use the functions forward_euler_system.m and bacward_euler_system_nhcc.m to solve (3), with $\bf F$ of the form (4), where $A=-\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$, ${\bf g}(t)={\bf 0}$, $y_0=(1,0.6)^T$, $t_0=0$, and $t_f=5$. Set $N_h=25$ and plot the numerical solutions.
- d) Repeat point c) with smaller values of N_h . Discuss the results obtained in terms of the absolute stability of the forward and backward Euler methods.