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Ordinary differential equations

Exercise I (Theoretical)

Discuss the existence and uniqueness of the solution y(t) of the Cauchy problem

find y : [0,∞) → R :

{
y′(t) = − arctan(y) for all t > 0,
y(0) = 1,

(1)

Exercise II (MATLAB)

Consider the Cauchy problem

find y : I ⊂ R → R :

{
y′(t) = f(t, y(t)) for all t ∈ I,
y(t0) = y0,

(2)

where I = (t0, tf ) is the integration interval, f : I × R → R is a given continuous function, and
y0 ∈ R is the initial datum.

a) Write the MATLAB function runge kutta 4.m that implements the explicit 4-stage Runge-
Kutta method RK4. Use the function runge kutta 4 template.m as template.

�
function [ tv, uv ] = runge kutta 4( fun, y0, t0, tf, Nh )
% RUNGE KUTTA 4 Runge−Kutta 4, explicit method for the scalar ODE in the
% form:
% y'(t) = f(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% [ tv, uv ] = runge kutta 4( fun, y0, t0, tf, Nh )
% Inputs: fun = function handle for f(t,y), fun = @(t,y) ...
% y0 = initial value
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
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% uv = vector of approximate solution at times tv
%

return� �
b) Use the functions forward euler.m, heun.m (from Series 12), and runge kutta 4.m

to solve problem (2) for f(t, y) =
(

cos(t)
α+sin(t) + β

)
y, y0 = α, t0 = 0, tf = 30, α = 1.5,

and β = −0.2. Set Nh = 30 and compare the numerical solutions with the exact solution
y(t) = (α+ sin(t)) eβ(t−t0).

c) Compute the errors eFE
n =

∣∣y(tn)− uFE
n

∣∣, eHn =
∣∣y(tn)− uHn

∣∣, and eRK4
n =

∣∣y(tn)− uRK4
n

∣∣.
Select n such that the computed errors correspond to time t = 10 for increasing values of
the number of subintervals Nh = 30, 60, 120, 240, 480, 960. Plot the computed errors vs h and
graphically deduce the convergence orders of the methods.

d) Repeat point b) to solve the Cauchy problem corresponding to f(t, y) = λy, with λ = −0.525,
t0 = 0, tf = 40, and y0 = 1. Vary the number of subintervals Nh and try to identify empirically
which values of h yield (absolutely) stable numerical methods.

Exercise III (MATLAB)

Consider a system of first order ODEs:

find y : I ⊂ R → Rm :

{
y′(t) = F(t,y(t)) for all t ∈ I,
y(t0) = y0,

(3)

where m ≥ 1, I = (t0, tf ) is the integration interval, F : I × Rm → Rm is a given vector-valued
function, and y0 ∈ Rm is the initial datum. If F is of the form

F(t,y) = Ay + g(t), (4)

for some matrix A ∈ Rm×m and a vector-valued function g : I → Rm, then the system of ODEs (3)
is said to be linear and non-homogeneous with constant coefficients.

a) Write the MATLAB function forward euler system.m that implements the forward Euler
method for the solution of (3). Use the function forward euler system template.m as
template.

�
function [ tv, uv ] = forward euler system( fun, y0, t0, tf, Nh )
% FORWARD EULER SYSTEM Forward Euler method for solving a system of ODEs
% in the form:
% y'(t) = F(t,y(t)), t \in (t0,tf)
% y(0) = y 0
%
% y, y 0 are vectors of size (m x 1)
%
% [ tv, uv ] = forward euler system( fun, y0, t0, tf, Nh )
% Inputs: fun = function handle for F(t,y), fun = @(t,y) ...
% a vector of size (m x 1) must be returned by fun
% y0 = initial vector of size (m x 1)
% t0 = initial time
% tf = final time
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% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = matrix of the approximate solution at times tv
% size (m x (Nh+1))

return� �
b) Write the MATLAB function backward euler system nhcc.m that implements the back-

ward Euler method for the solution of a problem (3) that is linear and non-homogeneous with
constant coefficients, see (4). Use the function backward euler system nhcc template.m
as template.

�
function [ tv, uv ] = backward euler system nhcc( A, g, y0, t0, tf, Nh )
% BACKWARD EULER SYSTEM NHCC Backward Euler method for solving a system of
% ODEs in the nonhomogeneous with constant coefficients form:
% y'(t) = A y(t) + g(t), t \in (t0,tf)
% y(0) = y 0
%
% y, y 0 are vectors of size (m x 1)
%
% [ tv, uv ] = backward euler system nhcc( A, g, y0, t0, tf, Nh )
% Inputs: A = square matrix of size (m x m)
% g = function handle for g(t), g = @(t) ...
% a vector of size (m x 1) must be returned by g
% y0 = initial vector of size (m x 1)
% t0 = initial time
% tf = final time
% Nh = number of time subintervals
% Output: tv = vector of time steps (1 x (Nh+1))
% uv = matrix of the approximate solution at times tv
% size (m x (Nh+1))

return� �
c) Use the functions forward euler system.m and bacward euler system nhcc.m to

solve (3), with F of the form (4), where A = −
[
3 1
1 1

]
, g(t) = 0, y0 = (1, 0.6)T , t0 = 0, and

tf = 5. Set Nh = 25 and plot the numerical solutions.

d) Repeat point c) with smaller values ofNh. Discuss the results obtained in terms of the absolute
stability of the forward and backward Euler methods.
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