=PrL

Numerical Analysis and Computational Mathematics
Fall Semester 2024 — CSE Section
Prof. Laura Grigori

Assistant: Israa Fakih

Session 13 — December 11, 2024

Ordinary differential equations

Exercise I (Theoretical)

Discuss the existence and uniqueness of the solution y(t¢) of the Cauchy problem

find y :[0,00) — R { y'(t) = — arctan(y) for all ¢ > 0,
: [0, y

0) =1, (1)

Exercise II (M ATLAB)

Consider the Cauchy problem

.) y'(t) = f(t,y)) forall t € I,
ﬁndyICR—ﬂR : {y(to):ym (2)

where I = (to,ty) is the integration interval, f : I x R — R is a given continuous function, and
7o € R is the initial datum.

a)

Write the MATLAB function runge_kutta_4 .m that implements the explicit 4-stage Runge-
Kutta method RK4. Use the function runge_kutta_4_template.m as template.

function [tv, uv] = runge_kutta_4(fun, yO0, t0, tf, Nh)
RUNGE_KUTTA_4 Runge—-Kutta 4, explicit method for the scalar ODE in the
form:

o\

o

S y'(t) = £(t,y(t)), t \in (tO,tf)

% y(0) = y.0

% [tv, uv] = runge_kutta_4(fun, y0, t0, tf, Nh)

% Inputs: fun = function handle for f(t,y), fun = Q@(t,y)
% v0 = initial wvalue

% t0 = initial time

% tf = final time

% Nh = number of time subintervals

% Output: tv = vector of time steps (1 x (Nh+1))

o\

uv = vector of approximate solution at times tv

o\

return

b) Use the functions forward.-euler.m, heun.m (from Series 12), and runge_kutta_4.m

to solve problem (2) for f(t,y) = <a(fssi(rf()t) +5) Y, Yo = o, tg = 0, ty = 30, a = 1.5,
and 8 = —0.2. Set N, = 30 and compare the numerical solutions with the exact solution

y(t) = (o + sin(t)) ePE10),

—uffE , enH = ‘y(tn) —uﬂ, and eltK4 — ‘y(tn) —uﬁ‘K4|.

c) Compute the errors e = |y(t,) "
Select n such that the computed errors correspond to time ¢ = 10 for increasing values of
the number of subintervals N}, = 30, 60, 120, 240, 480, 960. Plot the computed errors vs h and

graphically deduce the convergence orders of the methods.

d) Repeat point b) to solve the Cauchy problem corresponding to f(¢,y) = Ay, with A = —0.525,
to = 0,1y = 40, and yo = 1. Vary the number of subintervals IV}, and try to identify empirically
which values of h yield (absolutely) stable numerical methods.

Exercise III (MATLAB)
Consider a system of first order ODEs:

/ _
findy :ITCR—>R™ y'(t) =F(t y()) for all t € I, -
y(to) = yo,

where m > 1, I = (to,ts) is the integration interval, F : I x R™ — R™ is a given vector-valued
function, and yg € R™ is the initial datum. If F is of the form

F(t,y) = Ay +g(t), (4)

for some matrix A € R”*™ and a vector-valued function g : I — R™, then the system of ODEs (3)
is said to be linear and non-homogeneous with constant coefficients.

a) Write the MATLAB function forward_euler_system.m that implements the forward Euler
method for the solution of (3). Use the function forward_euler_system_template.m as
template.

function [tv, uv] = forward_euler_system(fun, y0, tO0, tf, Nh)
FORWARD_EULER_SYSTEM Forward Euler method for solving a system of ODEs
in the form:

y'(t) = F(t,y(t)), t \in (t0,tf)

y(0) = y-0

o° o° o° o° oo

o\

vy, y-0 are vectors of size (m x 1)

o\

% [tv, uv] = forward.euler_system(fun, yO0, tO, tf, Nh)

% Inputs: fun = function handle for F(t,y), fun = @(t,y)

% a vector of size (m x 1) must be returned by fun
% yvO0 = initial vector of size (m x 1)

% t0 = initial time

% tf = final time

Nh = number of time subintervals
Output: tv = vector of time steps (1 x (Nh+1))
uv = matrix of the approximate solution at times tv
size (m x (Nh+1))

o° o o o

return

Write the MATLAB function backward_euler_system_nhcc.m that implements the back-
ward Euler method for the solution of a problem (3) that is linear and non-homogeneous with
constant coefficients, see (4). Use the function backward_euler_system nhcc_template.m
as template.

function [tv, uv] = backward.euler_system.nhcc(A, g, v0, t0, tf, Nh)
BACKWARD_EULER_SYSTEM_NHCC BRackward Euler method for solving a system of
ODEs in the nonhomogeneous with constant coefficients form:

y'(t) = A y(t) + g(t), t \in (t0,tf)

y(0) = y-0

y, y-0 are vectors of size (m x 1)

[tv, uv] = backward_euler_system.nhcc(A, g, y0, t0, tf, Nh)
Inputs: A = square matrix of size (m x m)

g = function handle for g(t), g = @(t)

a vector of size (m x 1) must be returned by g

yvO0 = initial vector of size (m x 1)

t0 = initial time

tf = final time

Nh = number of time subintervals
Output: tv = vector of time steps (1 x (Nh+1))

uv = matrix of the approximate solution at times tv

0 o o0 o° o° o A A O A o° A° o O° o o° o° o

size (m x (Nh+1))

return

Use the functions forward_euler_system.m and bacward_euler_system_nhcc.m to

solve (3), with F of the form (4), where A = — [i’ i], g(t) =0, y0 = (1,0.6)7, to = 0, and

ty = 5. Set Nj = 25 and plot the numerical solutions.

Repeat point ¢) with smaller values of Nj. Discuss the results obtained in terms of the absolute
stability of the forward and backward Euler methods.

