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1. Introduction to Numerical Analysis

1.1 Machine Representation of Real Numbers
The computer can only represent and operate with a finite set of real numbers x 2 R.

1.1.1 Floating point numbers
Definition 1.1 The set of floating point numbers F is the subset of real numbers which can be
represented at the computer, i.e. F⇢ R, with dim(F)<+•. In general, F= F0 [{0}, with F0
the floating point numbers excluding the zero.

We indicate with f l(x) the floating point representation of
the real number x 2 R.

⌥ Example 1.1 x =
1
3
= 0.3 = 0.333 · · ·3

| {z }

• digits

, while f l(x) = 0.333 · · ·3
| {z }

N digits

, with N <+•. ⌥

The set F0 = F0(b , t,L,U) is characterized by four parameters b , t, L, and U such that any real
number x 2 F0 can be written as:

x = (�1)s mb

e�t = (�1)s (a1a2 · · ·at)
b

b

e�t ,

where:
• b is the base (the numerical system);
• m = (a1a2 · · ·at)

b

is the mantissa with t number of digits such that 0 < a1  b � 1 and
0  ai  b �1 for i = 2, . . . , t;

• e 2 Z is the exponent such that L  e U , with L < 0 and U > 0;
• s = {0,1} is the sign.

1



2 Chapter 1. Introduction to Numerical Analysis

Once F0(b , t,L,U) is characterized, x 2 F0 is fully represented by s, m, and e. The minimum and
maximum positive real numbers which can be represented at the calculator are xmin = b

L�1 and
xmax = b

U �1�b

�t�, respectively.

Definition 1.2 The epsilon machine eM := b

1�t is the minimum real number greater than zero

such that f l(1+ eM)> 1. The roundoff error
1
2

eM is an upper bound of the relative error in the
representation of a real number x 2 R\{0}, i.e.:

|x� f l(x)|
|x|  1

2
eM.

Remark 1.1 Even if the roundoff error
1
2

eM is “small”, i.e. the relative error is ”small”, the
absolute error |x� f l(x)| may be very “large”, especially if |x| is “large”.

⌥ Example 1.2 We consider the set of floating point numbers F0(2,2,�1,2), i.e. with b = 2
(numerical system in base 2), t = 2 (number of digits), L = �1, and U = 2. Then, we have

eM = b

1�t =
1
2

, xmin = b

L�1 =
1
4

, and xmax = b

U �1�b

�t� = 3. The values allowed for the
exponent e are �1, 0, 1, and 2. The mantissa is m = (a1a2)

b

since t = 2; then, since b = 2, we have
a1 = 1, while a2 is either 0 or 1. The values allowed for m are therefore m = (10)2 = 2 or (11)2 = 3.
For the sign s = 0, the positive real numbers in F0 are x = mb

e�t = m2e�2 as summarized in the
following table.

e �1 0 1 2

m = (10)2 = 2
1
4

1
2

1 2

m = (11)2 = 3
3
8

3
4

3
2

3

⌥

Remark 1.2 The larger is | f l(x)|, the lesser dense are the numbers in R.

Remark 1.3 For 64–bit computing (CPUs) with base b = 2, 1 digit is reserved for the sign s, 52
digits are generally used for t, while 11 for the exponent e.

Remark 1.4 In MATLAB, for 64–bit CPUs, the number of digits t used for the mantissa m is
actually 52+1 = 53. Indeed, since the base b = 2 is used, the first digit a1 is always equal to 1.
Therefore, we have eM = 21�53 ' 2 ·10�16; in addition, we have xmin ' 10�308, and xmax ' 10308.

1.1.2 Floating point arithmetic
Algebraic operations on floating point numbers F do not enjoy the same properties of real numbers
R. Round–off errors may propagate and grow depending on the count and type of algebraic
operations involved in the computations.

⌥ Example 1.3 For any x 2R\{0}, we have
(1+ x)�1

x
⌘ 1. However, in floating point arithmetic

f l(1+ f l(x))�1
f l(x)

= y, where y is a real number generally different than 1. If we try to verify the
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first identity in MATLAB, we obtain that y 6= 1, with the following errors depending on the chosen
value of x.

x 10�10 10�14 10�15 10�16

relative error 8 ·10�6% 8 ·10�2% 11% 100%

⌥
The term flops is used to indicate the number of floating point operations.

1.2 Mathematical and Numerical Problems
We recall some basic notions of numerical approximation of mathematical problems.

1.2.1 The mathematical problem
Let us start by considering a physical problem (PP) endowed with a physical solution, symbolically
indicated with xph, which depends on some data d. Then, the mathematical problem (MP) represents
the mathematical formulation of the PP with the mathematical solution x. We indicate the MP as:

F(x;d) = 0, (1.1)

with x 2 X and d 2 D , where X and D are suitable spaces. The error between the physical and
mathematical solutions is called model error em := xph � x.

⌥ Example 1.4 We consider as PP a body falling under the action of external forces, including
the gravity, and as physical solution xph the velocity of the body at a given time t f > 0. In order to
define the associated MP, we recall the following model:

find V (t) :

(

mV̇ (t) = fext(t) for t > 0,

V (0) = 0,

where V (t) is the body velocity, m its mass, and fext(t) the external forces. By identifying the
mathematical solution x with V (t f ), i.e. x =V (t f ), we have the following MP:

F(x;d) = x�
Z t f

0

fext(t)
m

dt = 0,

where the data are d =
�

t f ,m, fext(t)
 

. ⌥

Remark 1.5 Before solving a MP, one needs to ensure that it is well–posed.

Before introducing the notion of well–posedness of a MP, we recall the following definition.

Definition 1.3 The solution x 2 X of the MP F(x;d) = 0 is continuously dependent on the data
d 2 D if and only if, for all dd such that (d +dd) 2 D and dx such that F(x+dx;d +dd) = 0,
there exist two constants h0 = h0(d)> 0 and K0 = K0(d) such that

kddk  h0 =) kxk  K0kddk, (1.2)

with k ·k a suitable norm.
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Figure 1.1: Schematic representation of the physical, mathematical, and numerical problems and
their solutions.

⌥ Example 1.5 We consider the following MPs.
• F(x;d) = x� g d = 0 for some g 2 R positive, x 2 X ⌘ R, and d 2 D ⌘ R. We have

F(x+dx;d +dd) = (x+dx)� g (d +dd) = 0, from which we obtain dx = g dd. Hence, if
we choose h0 = 1 and K0 = g , the condition (1.2) is satisfied and x 2 X is continuously
dependent on d 2 D .

• F(x;d) = x2 � d = 0 for x 2 X ⌘ R and d 2 D ⌘ R. We observe that x = ±
p

d if d � 0,
while ±

p

|d| i if d < 0; in this latter case, x 2 C, i.e. x /2 X , for which x is not continuously
dependent on d 2 D ⌘ R.

⌥

Definition 1.4 The MP F(x;d) = 0 of Eq. (1.1) is well–posed (stable) if and only if there exists
a unique solution x 2 X which is continuously dependent on the data d 2 D .

MP which are formally well–posed may exhibits “large” variations of the solution x even for ”small”
changes of the data d. A measure of this sensitivity is given by the conditioning number of the
MP.

Definition 1.5 The relative conditioning number of the MP F(x;d) = 0 for the data d 2 D is:

K(d) := sup
dd : (d+dd)2D

and kddk6=0

⇢

kdxk/kxk
kddk/kdk

�

.

Remark 1.6 The relative conditioning number of a MP is such that K(d)� 1 by definition. If
K(d) is “small”, the MP is well–conditioned; if K(d) is “large”, the MP is ill–conditioned.

⌥ Example 1.6 We consider the MP F(x;d) = d x�a = 0 for some a 2 R, with x 2 X ⌘ R
and d 2 D ⌘ R. We have F(x+dx;d +dd) = (d +dd)(x+dx)�a = 0, from which we obtain
dx
x

=� d
d +dd

dd
d

. We have K(d)' sup
dd : (d+dd)2D

and kddk6=0

�

�

�

�

d
d +dd

�

�

�

�

, which can be “large” if dd '�d. ⌥
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1.2.2 The numerical problem
The numerical problem (NP) is an approximation of the MP (1.1); we indicate its numerical solution
as xh, with h a suitable discretization parameter (in other instances, n is used). The error between
the mathematical and numerical solutions is called truncation error et := x� xh (see also Fig. 1.1).
We refer to the NP as:

Fh(xh;dh) = 0, (1.3)

where xh 2 Xh and dh 2 Dh, with Xh and Dh suitable spaces. The final solution bxh is generally
affected by the roundoff error er := xh � bxh. The truncation and roundoff errors determine the
computational error ec := x� bxh = et + er. We remark that typically |er|⌧ |et |, for which et is
often identified with ec.

⌥ Example 1.7 For the MP F(x;d) = x�
Z t f

0
g(t)dt = 0 with the data d = {t f ,g(t)}, we can

consider the NP Fh(xh;dh) = xh �h
n�1

Â
i=0

g(ti) = 0, where ti = ih for i = 0, . . . ,n, with h =
t f

n
.

⌥

Remark 1.7 As for the MP, also for the NP we need to ensure that it is well–posed.

Definition 1.6 The NP problem Fh(xh;dh) = 0 of Eq. (1.3) is well–posed (stable) if and only if
there exists a unique solution xh 2 Xh which is continuously dependent on the data dh 2 Dh.

Definition 1.7 The relative conditioning number of the NP Fh(xh;dh) = 0 for the data dh 2 Dh
is:

Kh(dh) := sup
ddh : (dh+ddh)2Dh

and kddhk6=0

⇢

kdxhk/kxhk
kddhk/kdhk

�

.

For a NP the concept of consistency with the MP must be introduced.

Definition 1.8 The NP (1.3) is consistent if and only if lim
h!0

Fh(x;d) = F(x;d) = 0, with d 2 Dh.

Definition 1.9 The NP (1.3) is strongly consistent if and only if Fh(x;d) ⌘ F(x;d) = 0 for all
h > 0, with d 2 Dh.

⌥ Example 1.8 We consider two different NP associated to the MP F(x;d) = x� d = 0, with
d =

p
2, for which x =

p
2.
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• We define the NP Fn(xn;d) = xn+1 �
3
4

xn �
1

2xn
= 0 for n � 0, with x0 = 1; in this case n

stands for the discretization parameter and indicates the iterate number. Since Fn(x;d) =
p

2� 3
4
p

2� 1
2
p

2
= 0 for all n � 0, the NP is strongly consistent.

• We set now the NP Fn(xn;d) = xn+1 �
3
4

xn �
1

2xn
+

1
(1+n)5 = 0 for n � 0, with x0 = 1. We

observe that Fn(x;d) =
1

(1+n)5 6= 0 for n � 0, for which the NP is not strongly consistent.

However, NP is consistent since lim
n!+•

Fn(x;d) = 0.

⌥

Another important concept of a NP is the convergence.

Definition 1.10 Let x(d) be the mathematical solution of the MP F(x(d);d) = 0 of Eq. (1.1) and
xh(d+ddh) be the numerical solution of the NP Fh(xh(d+ddh);d+ddh) = 0. Then, the NP (1.3)
is convergent if and only if for all e > 0, there exists h0 = h0(e)> 0 and D=D(h0,e) such that, for
all h< h0 and for all admissible ddh for which kddhkD, the condition kx(d)�xh(d+ddh)k e

is satisfied.

Remark 1.8 If the NP is convergent, the computational error tends to zero, i.e. lim
h!0

(or n!+•)

ec = 0.

An important aspect related to the converge of a NP is the convergence order; with this aim, we
redefine in the following the computational error ec as ec = |x�bxh|.

Definition 1.11 If the computational error ec C hp, with C a positive constant independent of
h and p, then the NP is convergent with order p.

Remark 1.9 If there exists a positive constant eC C independent of h and p such that eChp 
ec Chp, then we can write ec 'Chp.

Remark 1.10 If one can assume that ec 'Chp, then the convergence order p can be estimated
in two manners by considering a MP for which the (exact) mathematical solution x is known.

• Algebraically. First, the errors ec1 and ec2 associated to two values of the discretization
parameters h1 and h2 (which are sufficiently “small”) are computed, respectively; then, by

setting ec1 'Chp
1 and ec2 'Chp

2 and observing that
ec1

ec2
=

✓

h1

h1

◆p

, p is estimated as:

p =
log(ec1/ec2)

log(h1/h2)
.

• Graphically. The errors ec computed for different values of h are plotted vs. h in log–log
scales. Since logec = log(Chp) = logC+ p logh, we have p = atan(q), where q is the
slope of the (h,ec) curve, which is a straight line in log–log scales. Instead of computing
the angle q , one can graphically verify if the curves (h,ec) and (h,hp) are parallel in
log–log scales.
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Remark 1.11 A NP must be well–posed (well–conditioned), consistent, and convergent.

Theorem 1.1 — Lax–Richtmeyer, equivalence. If the NP Fh(xh;dh) = 0 for xh 2 Xh and
dh 2 Dh is consistent, then it is well–posed if and only if it is convergent (i.e. xh ! x).

The equivalence theorem is useful since it allows to verify only two of the required properties
of a NP problem to yield the third one; specifically, we observe that in general it is “easy” to
show the consistency of a NP, while it may be “difficult” to show its well–posedness and/or
convergence.

Remark 1.12 Following the equivalence theorem, if the NP is consistent and well–posed then it
is also convergent; similarly, if the NP is consistent and convergent then it is also well–posed.

1.2.3 Choice of a numerical method
The choice of a numerical method (NP) to approximate the solution x of a MP should take into
account for:

• the (mathematical) properties of the MP;
• the computational efficiency in terms of: expected convergence order of the error, flops

involved in the computation, CPU available, memory access and storage.

Remark 1.13 If m indicates the size of the NP, the flops may depend on m in different manners,
according to the following Table.

O(1) O(m) O(mg) O(gm) O(m!)
flops independent linear polynomial exponential factorial

⌥ Example 1.9 For A 2 Rm⇥m, the computation of det(A) by means of the Cramer rule involves
approximately O(m!) flops. The estimated times associated to the computation of det(A) for
matrices of size m by means of a calculator with a 1GHz = 109 flops/s CPU are reported below.

m 5 10 15 20
m! 120 ⇠ 106 ⇠ 1012 ⇠ 1018

CPU time ⇠ 10�7 s ⇠ 10�3 s ⇠ 30min ⇠ 77years

⌥
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2. Nonlinear Equations

The goal is to numerically approximate the zero a 2R
of a function f (x) in the interval I = (a,b)✓ R. The
problem is also commonly referred as the numerical
solution of a nonlinear equation.

⌥ Example 2.1 Supply and demand: microeconomic model of price determination of a good in
a competitive market. The unit price P of a good varies until an equilibrium between supply and
demand quantities (Q) is met.

P = S(Q) is the function representing the supply of the good; the
quantity of the good increases if the price increases. P = D(Q)
is the demand function; the demand of the good increases if
its price decreases. (Q⇤,P⇤) is the equilibrium point for which
P⇤ = S(Q⇤) = D(Q⇤); if x = Q, one needs to solve the nonlinear
equation f (x) = S(x)�D(x) = 0.

⌥

2.1 Bisection Method

We consider the bisection method for the approximation of the zero a 2 I of a function f (x).

2.1.1 Foundation of the bisection method
Theorem 2.1 — Zeros of a continuous function. Let f (x) be a continuous function in the
interval I = (a,b), that is f 2 C0(I) ⌘ C0([a,b]). If f (a) f (b) < 0, then there exists at least a
zero a 2 I of the function f (x).

9
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⌥ Example 2.2 We illustrate some examples for functions f (x) such that f (a) f (b)< 0.

⌥

Let us assume that there exists an unique zero a 2 I of a function f 2C0(I) such that f (a) f (b)< 0.
Then, the bisection method searches the zero a by recursively approximating it with the sequence
of mid–points of the subintervals I(k) of I for which the function f (x) features changes of sign.

⌥ Example 2.3 We illustrate the bisection method and algorithm in the following pictures.

Step 0.

I(0) =
⇣

a(0),b(0)
⌘

= I = (a,b) and

x(0) =
a(0) +b(0)

2
=

a+b
2

Step 1.

Since f
⇣

x(0)
⌘

f
⇣

b(0)
⌘

< 0:

a(1) = x(0), b(1) = b,
I(1) = (a(1),b(1)) = (x(0),b), and

x(1) =
a(1) +b(1)

2
=

x(0) +b
2

.

Step 2.

Since f
⇣

x(1)
⌘

f
⇣

a(1)
⌘

< 0:

a(2) = a(1), b(2) = x(1),
I(2) = (a(2),b(2)) = (a(1),x(1)), and

x(2) =
a(2) +b(2)

2
=

a(1) + x(1)

2
.

⌥
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2.1.2 Algorithm and properties
We report the algorithm and the numerical properties of the bisection method.

Algorithm 2.1: Bisection method

set k = 0, a(0) = a, b(0) = b, and x(0) =
a(0) +b(0)

2
;

for k = 1,2, . . ., until a stopping criterion is satisfied do

if f
⇣

x(k�1)
⌘

= 0 then

set a = x(k�1) and terminate the loop;
else

if f
⇣

x(k�1)
⌘

f
⇣

a(k�1)
⌘

< 0 then

set a(k) = a(k�1) and b(k) = x(k�1);
end

if f
⇣

x(k�1)
⌘

f
⇣

b(k�1)
⌘

< 0 then

set a(k) = x(k�1) and b(k) = b(k�1);
end

set x(k) =
a(k) +b(k)

2
;

end

end

Remark 2.1 For the subinterval I(k) =
⇣

a(k),b(k)
⌘

) and its midpoint x(k) =
a(k) +b(k)

2
we have

that both x(k) and a 2 I(k) for all k � 0. Moreover, since
�

�

�

I(k)
�

�

�

:= b(k)� a(k) ⌘
�

�I(k�1)
�

�

2
for all

k � 1, we have:

�

�

�

I(k)
�

�

�

=

�

�I(0)
�

�

2k =
b�a

2k for all k � 0.

Let us indicate the (computational) error associated to the bisection method as e(k) :=
�

�

�

x(k)�a

�

�

�

.

Remark 2.2 The error e(k) =
�

�

�

x(k)�a

�

�

�

can be bounded from above by the size of the subinterval

I(k+1) for all k � 0 which plays the role of error bound, also known as error estimator. We have:

e(k)  ee(k) :=
�

�

�

I(k+1)
�

�

�

=
b�a
2k+1 for all k � 0. (2.1)

This implies that the bisection method is convergent; indeed lim
k!+•

e(k) = 0 since e(k)  ee(k) for

all k � 0 and lim
k!+•

ee(k) = lim
k!+•

b�a
2k+1 = 0.

Remark 2.3 Given a tolerance tol > 0, one can compute the minimum number of iterations of
the bisection method, say kmin, ensuring that the error e(kmin) is smaller than tol, i.e. e(kmin) < tol.
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Indeed, from Eq. (2.1) we have that kmin is the smallest integer number such that
b�a

2kmin+1 < tol,

for which kmin > log2

✓

b�a
tol

◆

�1.

We already know that the bisection method is convergent. However, we aim at characterizing such
convergence. With this aim, we provide the following definition.

Definition 2.1 An iterative method for the approximation of the zero a of the function f (x) is
convergent with order p if and only if

lim
k!+•

�

�x(k+1)�a

�

�

�

�x(k)�a

�

�

p = µ, (2.2)

with µ > 0 a real number independent of k, which is called asymptotic convergence factor. In
the case of linear convergence, i.e. for p = 1, we need 0 < µ < 1.

⌥ Example 2.4 We report in the following a typical plot of the sequence of errors e(k) vs. the
iteration number k for hypothetical iterative methods exhibiting convergence orders p = 1 and 2.

The logarithmic scale is used on the error axis, while
the linear scale on the axis of the iteration number. We
notice that the linear convergence (p = 1) is graphi-
cally represented by a straight line, whose slope de-
pends on the asymptotic convergence factor µ . A
parabola is obtained instead for the quadratic conver-
gence (p = 2).

⌥

Remark 2.4 For the bisection method the error may not be monotonically convergent, i.e. it is
possible that e(k+1)� e(k) for some k � 0; therefore, even if the bisection method is convergent, a
convergence order can not be established according to Eq. (2.2). Similarly, the absolute residual
r(k) :=

�

�

�

f
⇣

x(k)
⌘

�

�

�

is not monotonically decreasing, in general.

Remark 2.5 For the bisection method, the sequence of error estimators
n

ee(k)
o

is linearly

convergent according to Eq. (2.2) with p = 1 and µ =
1
2

; indeed:

ee(k+1)

ee(k)
=

(b�a)/2k+2

(b�a)/2k+1 =
1
2

for all k � 0.

⌥ Example 2.5 We highlight the typical behavior of the sequence of errors e(k) and error estimators
ee(k) vs. the iteration number k obtained for the bisection method.

The logarithmic scale is used on the error axis, while
the linear scale on the axis of the iteration number.
Following Remarks 2.4 and 2.5 we graphically high-
light that a convergence order cannot be established
for the error, while the convergence is linear for the
error estimator.

⌥
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2.1.3 Stopping criterion
The stopping criterion of the bisection algorithm is based on the error estimator (bound) ee(k)of
Eq. (2.1). In Algorithm 2.1, we considered the following stopping criterion in pseudocode (in place
of the for loop) by indicating with tol a prescribed tolerance and kmax the maximum number of
iterations allowed.

Algorithm 2.2: Bisection method. Stopping criterion
. . .;
while (ee(k) � tol & k < kmax) do

. . . ;
end

2.2 Newton Method
We consider the Newton method and its variants for approximating the zero a of the function f (x).

2.2.1 Newton method
Let us assume that f 2C0(I) and is differentiable in the interval I = (a,b)✓ R. Given a generic
iterate x(k) 2 I, the equation of the tangent line to the curve (x, f (x)) at the coordinate x(k) is
y(x) = f

⇣

x(k)
⌘

+ f 0
⇣

x(k)
⌘⇣

x� x(k)
⌘

. If we assume that y
⇣

x(k+1)
⌘

= 0, then we compute the

iterate x(k+1) as:

x(k+1) = x(k)�
f
�

x(k)
�

f 0
�

x(k)
� for all k � 0, (2.3)

given some initial guess x(0) and provided that f 0
⇣

x(k)
⌘

6= 0 for all k � 0. Eq. (2.3) is named

Newton iterate. One obtains the zero a as the limit of the sequence of iterates
n

x(k+1)
o+•

k=0
which

solve the tangent equation to the curve (x, f (x)) in
n

x(k)
o+•

k=0
, respectively.

⌥ Example 2.6 We graphically highlight the Newton method in the following pictures by reporting
the first two Newton iterates.

Step 1 Step 2

⌥
In summary, the Newton method is applicable to a function f 2 C0(I) which differentiable in I;
then, given x(0) 2 I, the Newton method consists in sequentially applying the Newton iterate (2.3),
provided that f 0

⇣

x(k)
⌘

6= 0 for all k � 0.
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Algorithm 2.3: Newton method

set k = 0 and the initial guess x(0);
while (stopping criterion is false) do

x(k+1) = x(k)�
f
�

x(k)
�

f 0
�

x(k)
� ;

set k = k+1;
end

Remark 2.6 Let us assume that f 2C2(I), then the Taylor expansion of f (x) around x(k) reads
f
⇣

x(k+1)
⌘

= f
⇣

x(k)
⌘

+ f 0
⇣

x(k)
⌘

d

(k) +O
⇣

(d (k))2
⌘

, where d

(k) := x(k+1)� x(k) for k � 0 is the

difference of successive iterates. If f
⇣

x(k+1)
⌘

= 0, then the Newton method represents the first

order approximation of the Taylor expansion of f (x) around x(k); we observe that in order to
satisfy this assumption, one needs d

(k) to be “small”.

Remark 2.7 The choice of the initial guess x(0) is crucial for the success of the Newton method.
Indeed, one needs to choose x(0) “sufficiently” close to the zero a . As a matter of fact, the

sequence of Newton iterates
n

x(k+1)
o+•

k=0
may diverge, instead of converging to a , if the initial

guess x(0) is not “sufficiently” close to the zero a . Since a is unknown, the choice of x(0) may
not be trivial; in this respect, the plot of the function or the bisection method can be used to select
x(0) “sufficiently” close to a .

⌥ Example 2.7 The following example illustrates that the Newton iterates are not converging to
the zero a , due to the fact that x(0) is not “sufficiently” close to a .

⌥

Remark 2.8 For (linear) affine functions in the form f (x) = cx+d with c and d 2R, the Newton

method converges to the zero a =�d
c

in 1 iteration regardless of the choice of x(0). Indeed, we

have from Eq. (2.3) that x(1) = x(0)�
f
�

x(0)
�

f 0
�

x(0)
� = x(0)� cx(0) +d

c
=�d

c
= a for all x(0) 2 R.

We characterize in the following the convergence properties of the Newton method.
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Proposition 2.2 — Convergence of the Newton method. If f 2C1(I), x(0) is “sufficiently”
close to a 2 I, and f 0(a) 6= 0, then the Newton method is convergent to a , provided that
f 0
⇣

x(k)
⌘

6= 0 for all k � 0.

Proposition 2.3 — Convergence order of the Newton method. Let us indicate with I
a

a
neighborhood of a . If f 2 C2(I

a

), x(0) is “sufficiently” close to a , and f 0(a) 6= 0, then the
Newton method is convergent with order 2 (quadratically) to a , provided that f 0

⇣

x(k)
⌘

6= 0 for
all k � 0. In particular, we have:

lim
k!+•

x(k+1)�a

�

x(k)�a

�2 =
1
2

f 00(a)

f 0(a)
;

following Eq. (2.2), p= 2 is the convergence order and µ =
1
2

f 00(a)

f 0(a)
the asymptotic convergence

factor.

Proof. The proof is based on the interpretation of the Newton method as a fixed point iterations
method; see Sec. 2.3.5. ⌅

Definition 2.2 Let f 2 Cm(I
a

), with m 2 N such that m � 1. The zero a 2 I
a

is said to be of
multiplicity m if f (i)(a) = 0 for all i = 0, . . . ,m�1 and f (m)(a) 6= 0. If the previous condition is
satisfied for m = 1, the zero a is called simple, otherwise is multiple.

Proposition 2.4 — Convergence order of the Newton method, zero multiple. If f 2
C2(I

a

)\Cm(I
a

) and x(0) is “sufficiently” close to the zero a of multiplicity m > 1, then the
Newton method is convergent with order 1 (linearly) to a , provided that f 0

⇣

x(k)
⌘

6= 0 for all
k � 0. In particular, following Eq. (2.2), we have:

lim
k!+•

�

�x(k+1)�a

�

�

�

�x(k)�a

�

�

= µ,

with p = 1 the convergence order and µ 2 (0,1) the asymptotic convergence factor.

Remark 2.9 If the zero a is simple m = 1, the Newton method converges at least quadratically
according to Proposition 2.3. Conversely, if the zero a is multiple (m > 1), the Newton method
only converges linearly according to Proposition 2.4. We observe that, generally, the higher is
the convergence order, fewer iterations are necessary to reach a prescribed value of the error, i.e.
the method results to be more efficient.

Examples of linear and quadratic convergence are graphically highlighted in Example 2.4.

2.2.2 Modified Newton method
Let us assume that f 2Cm(I

a

), with a 2 I
a

and m � 1 the multiplicity of a . The k–the iterate of
the modified Newton method reads:

x(k+1) = x(k)�m
f
�

x(k)
�

f 0
�

x(k)
� for all k � 0, (2.4)
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given the initial guess x(0) and provided that f 0
⇣

x(k)
⌘

6= 0 for all k � 0. Following Algorithm 2.3,
we have the following one for the modified Newton method.

Algorithm 2.4: Modified Newton method
choose m;
set k = 0 and the initial guess x(0);
while (stopping criterion is false) do

x(k+1) = x(k)�m
f
�

x(k)
�

f 0
�

x(k)
� ;

set k = k+1;
end

Remark 2.10 The modified Newton method requires the a priori knowledge of the multiplicity m
of the zero a . The latter can be eventually estimated by means of suitable numerical approaches.

The convergence properties of the modified Newton method are characterized by the following
Proposition.

Proposition 2.5 — Convergence order of the modified Newton method. If f 2C2(I
a

)\
Cm(I

a

), with m � 1 the multiplicity of the zero a 2 I
a

, and x(0) is “sufficiently” close to a ,
then the modified Newton method is convergent with order 2 (quadratically) to a , provided that
f 0
⇣

x(k)
⌘

6= 0 for all k � 0.

⌥ Example 2.8 We approximate the zero a = 0 of the function f (x) = sinm(x) in the interval
I =

⇣

�p

2
,
p

2

⌘

, with m = 1,2,3, . . .; with this aim we consider the Newton and modified Newton

methods. We observe that f 0(x) = msinm�1(x)cos(x), for which f 0(a) = 1 if m = 1 and f 0(a) = 0
for m � 2; the zero a is simple for m = 1, but multiple (m times) for m � 2. If we set the initial

guess x(0) =
p

6
, the first iterate of the Newton method yields x(1) =

p

6
� 1p

3m
, for which x(1) is

farther and farther from a (and closer and closer to x(0)), the larger is m. Conversely, for the

modified Newton method we have from Eq. (2.4) that x(1) =
p

6
� 1p

3
, regardless of the value of

m � 1. ⌥

2.2.3 Stopping criterion for Newton method
We consider different stopping criterion for the Newton method and its variants. Since the zero a is
in general unknown, the error e(k) =

�

�

�

x(k)�a

�

�

�

is also unknown; therefore, we need a suitable error

estimator (error indicator) ee(k) such that ee(k) ' e(k). By referring e.g. to the Newton and modified
Newton Algorithms 2.3 and 2.4, the iterations are stopped for k = kmin such that ee(kmin) < tol,
with tol a prescribed tolerance, or when the maximum number of iterations is reached; see e.g.
Algorithm 2.2.

First, we consider the criterion based on the difference of successive iterates, for which the
error estimator is chosen as:

ee(k) =
⇢

�

�

d

(k�1)
�

� if k � 1
tol +1 if k = 0

with d

(k) := x(k+1)� x(k) for k � 0.
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The criterion is satisfactory if the zero a is simple; this can be shown by interpreting the Newton
method as a fixed point iterations method; see Sec. 2.3.5.

Another criterion is based on the absolute residual, for which:

ee(k) =
�

�

�

r(k)
�

�

�

with r(k) := f
⇣

x(k)
⌘

for k � 0.

This criterion is satisfactory if
�

� f 0(x)
�

� ' 1 for x 2 I
a

a neighborhood of a , for which ee(k) ' e(k).
Conversely, the criterion is unsatisfactory if

�

� f 0(x)
�

�� 1 or
�

� f 0(x)
�

�' 0 for x 2 I
a

. Specifically, if
�

� f 0(x)
�

�� 1 for x 2 I
a

, the error is overestimated by the error estimator (ee(k) � e(k)), for which more
Newton iterations than necessary are performed; therefore, the stopping criterion is inefficient. If
�

� f 0(x)
�

�' 0 for x 2 I
a

, the error is underestimated by the error estimator (ee(k) ⌧ e(k)), for which the
Newton iterations are prematurely stopped since the error is larger than predicted by the estimator.

⌥ Example 2.9 The following examples graphically illustrate the situations for which the criterion
based on the residual is satisfactory or unsatisfactory.

Satisfactory, ee(k) ' e(k) Unsatisfactory, ee(k) � e(k) Unsatisfactory, ee(k) ⌧ e(k)

(error overestimated) (error underestimated)

⌥

2.2.4 Inexact and quasi–Newton methods
The Newton and modified Newton methods require the evaluation of the first derivative of the
function f (x); see Eqs. (2.3) and (2.4). However, in some cases of practical interest, the evaluation
of f 0(x) may be “difficult” or computationally expensive. Therefore, by referring e.g. to the Newton
iterate (2.3), f 0

⇣

x(k)
⌘

can be approximated by a computationally feasible quantity q(k) ' f 0
⇣

x(k)
⌘

.

Inexact or quasi–Newton methods are based on the use of an approximate value of f 0
⇣

x(k)
⌘

. The
general quasi–Newton iterate reads:

x(k+1) = x(k)�
f
�

x(k)
�

q(k)
for all k � 0,

with q(k) determining the method. We consider the following cases:
• for q(k) ⌘ f 0

⇣

x(k)
⌘

, we obtain the standard Newton method;

• for q(k) =
f (b)� f (a)

b�a
for all k � 0, with a 2 (a,b), we have the rope method;

• for q(k) =
f
�

x(k)
�

� f
�

x(k�1)�

x(k)� x(k�1) for all k � 1, we have the secant method1.

We observe that the secant method converges with order p = 1.6 if the zero a is simple.

1For the secant method, q(0) can be set as for the rope method.
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⌥ Example 2.10 The following examples graphically illustrate the rope and secant methods at the
general iterate x(k).

Rope method Secant method

⌥

2.2.5 Newton method for systems of nonlinear equations
The Newton method can be used to approximate the solution of systems of nonlinear equations.
Given F : Rd ! Rd , for some d � 1, the problem consists in finding the vector ↵ 2 Rd such that
F(↵) = 0. More specifically, we have:

x =

8

>

<

>

:

x1
...

xd

9

>

=

>

;

and F(x) =

8

>

<

>

:

f1(x)
...

fd(x)

9

>

=

>

;

=

8

>

<

>

:

f1(x1, . . . ,xd)
...

fd(x1, . . . ,xd)

9

>

=

>

;

.

Definition 2.3 Let F : Rd !Rd be differentialble in I
x

✓Rd a neighborhood of x 2Rd , then its

Jacobian in x is J
F

: Rd ! Rd⇥d such that (J
F

(x))i j =
∂ fi

∂x j
(x) for i, j = 1, . . . ,d.

The Newton method is applicable to a system of equations F 2C0(I↵) which is differentiable in
I↵ ✓ Rd , a neighborhood of ↵; then, given x(0) 2 I↵, the Newton method consists in sequentially
applying the following Newton iterate:

solve J
F

⇣

x

(k)
⌘

�(k) =�F

⇣

x

(k)
⌘

and set x

(k+1) = x

(k) +�(k) for all k � 0, (2.5)

provided that det
⇣

J
F

⇣

x

(k)
⌘⌘

6= 0 for all k � 0. The Newton algorithm using the stopping criterion
based on the difference of successive iterates is reported in the following.

Remark 2.11 At each Newton iterate, one needs to solve a linear system, unless d = 1 for which
J

F

⇣

x(k)
⌘

⌘ f 0
⇣

x(k)
⌘

. We also observe that the Newton iterate (2.5) can be obtained by the first

order expansion of F(x) around x

(k) as F

⇣

x

(k)
⌘

+ J
F

⇣

x

(k)
⌘ ⇣

x

(k+1)�x

(k)
⌘

= 0.

Regarding the convergence of the Newton method for systems of nonlinear equations, we state the
following.

Proposition 2.6 If F 2C2(I↵), with I↵ ✓ Rd a neighborhood of ↵, x

(0) 2 Rd is “sufficiently”
close to ↵, and det(J

F

(↵)) 6= 0, then the Newton method converges with order p = 2.
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⌥ Example 2.11 Let us consider the system of nonlinear equations F(x)=

(

sin(x1x2)+ x2

x1 + x2 �
1
2

e�x1x2

)

,

with the zero ↵=

( 1
2
0

)

. Its Jacobian is J
F

(x) =

"

x2 cos(x1x2) x1 cos(x1x2)+1
1+

x2

2
e�x1x2 1+

x1

2
e�x1x2

#

, for which

det(J
F

(↵)) =�3
2
6= 0. ⌥

2.3 Fixed Point Iterations
We consider the fixed point iterations method both to find the fixed point of an iteration function, as
well as to solve nonlinear equations.

2.3.1 Nonlinear equations, zeros, fixed points, and iteration functions
Given a function f : R ! R, we aim at finding the zero a (i.e. such that f (a) = 0). With
this goal, we can transform the problem of finding the zero a into a fixed point iterations prob-
lem.

Definition 2.4 Given the iteration function f : [a,b]✓R!R, we say that a 2R is a fixed point
of f if and only if f(a) = a .

⌥ Example 2.12 For the iteration function f(x) = cos(x) in the interval [0.1,1.1], we have the
fixed point a = cos(a)' 0.7391. ⌥
⌥ Example 2.13 We graphically illustrate the fixed points of some iteration functions.

⌥

Remark 2.12 The goal is to find the zero a of the nonlinear function f (x). We transform this
problem in a fixed point iterations problem by suitably choosing a fixed point iterations function
f(x) such that f (a) = 0 if and only if f(a) = a for a 2 [a,b]. We remark that there are different
iterations functions f(x) and multiple manners to obtain them in order to achieve this goal.

⌥ Example 2.14 The simplest manner to obtain f(x) from f (x) is based on the following steps.
Since f (a) = 0, we have f (a)+a = a , for which we can set f(x) = f (x)+ x. We remark that
this is very often not a “good” choice for the iteration function. ⌥
⌥ Example 2.15 We consider f (x) = 2x2 � x�1 for which we are interested in the zero a = 1.
A possibility consists in setting, following the previous Remark, f1(x) = f (x)+ x = 2x2 � 1. A

second possibility can be derived by setting f (x) = 0, from which we have x2 =
x+1

2
and then

x =±
r

x+1
2

; in this case, we can take f2(x) =

r

x+1
2

. ⌥
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2.3.2 Fixed point iterations algorithm
We state the fixed point iterations algorithm, based on the fixed point iterate:

x(k+1) = f

⇣

x(k)
⌘

k � 0, (2.6)

for some initial guess x(0).

Algorithm 2.5: Fixed point iterations

set k = 0 and the initial guess x(0);
while (stopping criterion is false) do

x(k+1) = f

⇣

x(k)
⌘

;

set k = k+1;
end

⌥ Example 2.16 We graphically illustrate the fixed point iterations algorithm in the following.
First, we consider f(x) = cos(x), with a = 0.1, b = 1.1, and x(0) = 0.2, for which we observe that
the algorithm is converging to a = cos(a)' 0.7391.

Then, we consider f(x) = 2x2 �1, with a = 0.5, b = 2, and x(0) = 1.1, for which the algorithm is
diverging from the fixed point a = 1; we observe that f(x) corresponds to the iteration function
f1(x) of Example 2.15.
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Finally, we consider f(x) =

r

1+ x
2

, with a = 0.5, b = 2, and x(0) = 1.9, for which the algorithm

converges to a = 1; in this case, f(x) corresponds to f2(x) in Example 2.15.

⌥

2.3.3 Convergence properties of fixed point iterations
We need to identify the properties of the iteration function f(x) in terms of existence and uniqueness
of the fixed point a , as well as the convergence of the fixed point iterations method.

Proposition 2.7 — Global convergence in an interval. Let us consider the iteration function
f : R! R and the fixed point iterations of Eq. (2.6).

1. If f 2C0([a,b]) and f(x) 2 [a,b] for all x 2 [a,b], then there exists at least a fixed point
a 2 [a,b] of f(x).

2. If, in addition to the hypothesis of (1), there exists a constant L 2 [0,1) such that
|f(x1)�f(x2)|  L |x1 � x2| for all x1, x2 2 [a,b], then the fixed point a is unique in
[a,b] and the fixed point iterations algorithm converges ( lim

k!+•
x(k) = a) for all the initial

guesses x(0) 2 [a,b].

Proof. (1) We show the existence of a 2 [a,b] according to the hypothesis (1). We introduce a
function g(x) = f(x)� x such that g(a) = 0. Since f 2C0([a,b]), also g 2C0([a,b]). In addition,
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since f(x) 2 [a,b] for all x 2 [a,b], we have g(a) = f(a)� a � 0 and g(b) = f(b)� b  0, for
which g(a)g(b) 0. Since g(x) is satisfying the hypotheses of Theorem 2.1, there exists at least a
zero a of g(x) in [a,b]; the latter is also a fixed point of f(x) (indeed, g(a) = f(a)�a = 0).

(2) We show the uniqueness of a 2 [a,b] and the convergence of the method for all x(0) 2 [a,b]
according to the hypotheses (2). We assume, by absurd, that there exist two distinct fixed points
a1 6= a2 such that f(a1) = a1 and f(a2) = a2. According to this assumption, we have 0 <
|a1 �a2| = |f(a1)�f(a2)|  L |a1 �a2|; since L < 1 by hypothesis, we have 0 < |a1 �a2| <
|a1 �a2|, which is absurd. Therefore, a1 ⌘ a2 = a , i.e. the fixed point is unique. Regarding the
convergence of the method, we observe that the error e(k+1) =

�

�

�

x(k+1)�a

�

�

�

=
�

�

�

f

⇣

x(k)
⌘

�f(a)
�

�

�


�

�

�

x(k)�a

�

�

�

= Le(k). By recursion, e(k)  Lk e(0) for all k � 0; since L < 1, we have lim
k!+•

e(k) = 0, i.e.

the method is convergent for all x(0) 2 [a,b]. ⌅

⌥ Example 2.17 We illustrate the results of Proposition 2.7 with the following examples.

The hypotheses (1) and (2) of Proposition 2.7
are satisfied, therefore there exists an unique
fixed point a 2 [a,b] and the method con-
verges to a for all x(0) 2 [a,b].

The hypotheses (1) are satisfied, but not the
hypotheses (2) of Proposition 2.7; therefore,
we can only guarantee that there exists at
least a fixed point a 2 [a,b].

The hypotheses (1) and (2) of Proposition 2.7
are not satisfied, therefore there may not exist
any fixed point a 2 [a,b].

⌥

We consider the following result on the global convergence in the interval [a,b] which uses more
restrictive hypotheses on the iteration function f(x) with respect to Proposition 2.7.

Proposition 2.8 — Global convergence in an interval. If f 2C1([a,b]), f(x) 2 [a,b] for all
x 2 [a,b], and

�

�

f

0(x)
�

�< 1 for all x 2 [a,b], then there exists an unique fixed point a 2 [a,b] and
the fixed point iterations method converges for all x(0) 2 [a,b] with order at least equal to 1
(linearly), i.e.:

lim
k!+•

x(k+1)�a

x(k)�a

= f

0(a),

with f

0(a) the asymptotic convergence factor.
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We illustrate now some results on the local convergence to the fixed point a , i.e. in a neighborhood
of a . First, we recall the Lagrange theorem.

Theorem 2.9 — Lagrange, mean value. If the function g 2 C1([a,b]), then there exists
x 2 (a,b) such that g(a)�g(b) = g0(x )(a�b).

Proposition 2.10 — Ostrowski, local convergence in a neighborhood of the fixed point.
If f 2C1(I

a

), with I
a

a neighborhood of the fixed point a of f(x), and
�

�

f

0(a)
�

�< 1, then, if the
initial guess x(0) is “sufficiently” close to a , the fixed point iterations method converges with
order at least equal to 1 (linearly), i.e.:

lim
k!+•

x(k+1)�a

x(k)�a

= f

0(a),

with f

0(a) the asymptotic convergence factor.

Proof. We only show that the method is at least linearly convergent. Under the hypothesis of
the Lagrange Theorem 2.9, we have x(k+1)�a = f

⇣

x(k)
⌘

� f (a) = f

0
⇣

x

(k)
⌘ ⇣

x(k)�a

⌘

, for

some x

(k) between a and x(k). If lim
k!+•

x(k) = a , also lim
k!+•

x

(k) = a and hence lim
k!+•

x(k+1)�a

x(k)�a

=

lim
k!+•

f

0
⇣

x

(k)
⌘

= f

0 (a). ⌅

Remark 2.13 Following Proposition 2.10, we observe for f 2C1(I
a

) that:
• if

�

�

f

0(a)
�

�< 1, the fixed point iterations converge to a with order at least equal to 1, if x(0)

is “sufficiently” close to a;
• if

�

�

f

0(a)
�

�⌘ 1, the convergence of the method to a depends on the properties of f(x) in
the neighborhood I

a

and the choice of the initial guess x(0) (as a matter of fact, the method
may converge or diverge);

• if
�

�

f

0(a)
�

�> 1, the convergence of the method to a is impossible, unless x(0) ⌘ a .

Proposition 2.11 — Local convergence in a neighborhood of the fixed point. If f 2
C2(I

a

), with I
a

a neighborhood of the fixed point a of f(x), f

0(a) = 0, and f

00(a) 6= 0, then, if
the initial guess x(0) is “sufficiently” close to a , the fixed point iterations method converges with
order 2 (quadratically), i.e.:

lim
k!+•

x(k+1)�a

�

x(k)�a

�2 =
1
2

f

00(a),

with
1
2

f

00(a) the asymptotic convergence factor.

The following result generalizes the previous ones.
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Proposition 2.12 — Local convergence in a neighborhood of the fixed point. If f 2
Cp(I

a

) for p � 1, with I
a

a neighborhood of the fixed point a of f(x), f

(i)(a) = 0 for all
i = 1, . . . , p�1, and f

(p)(a) 6= 0, then, if the initial guess x(0) is “sufficiently” close to a , the
fixed point iterations method converges with order p, i.e.:

lim
k!+•

x(k+1)�a

�

x(k)�a

�p =
1
p!

f

(p)(a),

with
1
p!

f

(p)(a) the asymptotic convergence factor.

2.3.4 Stopping criterion for fixed point iterations
We need to consider a stopping criterion to terminate the fixed point iterations of Algorithm 2.5.
With this aim, we introduce a suitable error estimator ee(k) of the error e(k) :=

�

�

�

x(k)�a

�

�

�

. Such error
estimator is based on the difference of successive iterates, i.e.:

ee(k) =
⇢

�

�

d

(k�1)
�

� if k � 1
tol +1 if k = 0

with d

(k) := x(k+1)� x(k) for k � 0;

tol > 0 is a suitable tolerance. The fixed point iterations algorithm is stopped at the first iteration k
such that ee(k) < tol or when k = kmax, with kmax the maximum number of iterations allowed.

We observe that a � x(k+1) = a � x(k) + x(k)� x(k+1) =
⇣

a � x(k)
⌘

� d

(k). Moreover, if f 2

C1(I
a

), we have from Theorem 2.9 that a � x(k+1) = f

0
⇣

x

(k)
⌘ ⇣

a � x(k)
⌘

for some x

(k) between

x(k) and a . Therefore, we have x(k)�a = f

0
⇣

x

(k)
⌘ ⇣

x(k)�a

⌘

�d

(k) and hence:

x(k)�a =� 1
1�f

0
�

x

(k)
�

d

(k), (2.7)

for some x

(k) between x(k) and a . We use the previous result to determine if the stopping criterion
based on the difference of successive iterates is satisfactory or not. If f

0(x)' 0 in a neighborhood
of a (f 0(a)' 0), the criterion is satisfactory since e(k) ' ee(k+1). If f

0(x)>�1, but f

0(x)'�1 in a

neighborhood of a , the criterion is still satisfactory since e(k) ' 1
2
ee(k+1) (the error is overestimated

by the estimator by a factor 2). Conversely, if f

0(x) < 1, but f

0(x) ' 1 in a neighborhood of a ,
the criterion is unsatisfactory since e(k) ⌧ ee(k+1), that is the error is underestimated by the error
estimator.

2.3.5 The Newton method as a fixed point iterations method
The Newton method (see Sec. 2.2) can be used to find the zero a of a general function f (x), for
which the Newton iterate is specified in Eq. (2.3). The problem of finding the zero a of f (x) with
the Newton method can be recast in a fixed point iterations method by using the iteration function
fN(x) such that fN(a) = a . From Eqs. (2.3) and (2.6) the iteration function associated to the
Newton method reads:

fN(x) = x� f (x)
f 0(x)

. (2.8)

It follows that the properties of the Newton method, including convergence to a can be deduced
from those of the iteration function fN(x).
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Proposition 2.13 If f 2Cm(I
a

), with I
a

a neighborhood of the zero a and m� 1 the multiplicity

of a , for the iteration function fN(x) of Eq. (2.8), we have f

0
N(a) = 1� 1

m
.

Proof. The proof, reported in Exercises Series 4, is based on rewriting f (x) as f (x) = (x�a)m g(x)
for x 2 I

a

, with the function g(x) such that g(a) 6= 0 and g(i)(a) = 0 for all i = 1, . . . ,m. ⌅

Corollary 2.14 If f 2C2(I
a

), a is a zero simple (m = 1), and x(0) is “sufficiently” close to a ,
then the Newton method converges with order 2 (quadratically), indeed:

lim
k!+•

x(k+1)�a

�

x(k)�a

�2 =
1
2

f

00
N(a) =

1
2

f 00(a)

f 0(a)
.

Proof. The result follows from Propositions 2.11 and 2.12, Eq. (2.8), and Proposition 2.13. ⌅

Remark 2.14 From Proposition 2.13, if a is a zero simple (m = 1), we have f

0
N(a) = 1� 1

m
⌘ 0.

Corollary 2.15 If f 2Cm(I
a

), a is a zero of multiplicity m > 1, and x(0) is “sufficiently” close
to a , then the Newton method converges with order 1 (linearly), indeed:

lim
k!+•

x(k+1)�a

x(k)�a

= f

0
N(a) = 1� 1

m
6= 0.

Proof. The result follows from Proposition 2.10, Eq. (2.8), and Proposition 2.13. ⌅

Similarly, to the modified Newton method (see Sec. 2.2.2), based on the iterate of Eq. (2.4), we
associate the iteration function fmN(x) defined as:

fN(x) = x�m
f (x)
f 0(x)

, (2.9)

where m is the multiplicity of the zero a .

Proposition 2.16 If f 2Cm(I
a

), with I
a

a neighborhood of the zero a and m� 1 the multiplicity

of a , for the iteration function fmN(x) of Eq. (2.9), we have f

0
mN(a) = 1�m

1
m

⌘ 0 for all m � 1.

Proof. The result follows analogously to that of Proposition 2.13. ⌅

Corollary 2.17 If f 2C2(I
a

)\Cm(I
a

), a is a zero of multiplicity m� 1, and x(0) is “sufficiently”
close to a , then the modified Newton method converges with order 2 (quadratically).

Proof. The result follows from Propositions 2.11 and 2.12, Eq. (2.9), and Proposition 2.16. ⌅

Regarding the quality of the stopping criterion based on the difference of successive iterates for the
Newton method discussed in Sec. 2.2.3, we recall the properties presented in Sec. 2.3.4 for fixed
point iterations. From Eq. (2.7) and Proposition 2.13, we remark that:

e(k) =
�

�

�

x(k)�a

�

�

�

'
�

�

�

�

1
1�f

0
N(a)

�

�

�

�

ee(k+1) = mee(k+1),
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where the error estimator ee(k+1) = d

(k) =
�

�

�

x(k+1)� x(k)
�

�

�

and m � 1 is the multiplicity of the zero a .

Therefore, if the zero a is simple (m = 1), we have e(k) ' ee(k+1) and the stopping criterion based
on the difference of successive iterates is satisfactory. Otherwise, for a zero of multiplicity m > 1,
and especially for m � 1, the criterion is unsatisfactory since the error is underestimated by the
error estimator, i.e. e(k) � ee(k+1). By using similar arguments for the modified Newton method, the
stopping criterion based on the difference of successive iterates is satisfactory, since e(k) ' ee(k+1)

regardless of the multiplicity m � 1 of the zero.

2.3.6 Fixed point iterations for vector valued functions
The fixed point iterations method can be used with vector valued iteration functions � : Rd ! Rd ,
for some d � 1. In this case, the problem consists in finding the vector ↵ 2Rd , the fixed point, such
that �(↵) =↵. The fixed point iterations method consists in sequentially applying the following
fixed point iterate:

x

(k+1) = �
⇣

x

(k)
⌘

for all k � 0,

given the initial guess x

(0) 2 Rd ; as stopping criterion the one based on the difference of successive
iterates can be used similarly to Sec. 2.3.4, i.e. ee(k) =

�

�

�

�(k�1)
�

�

�

2
< tol for k � 1, with tol a

prescribed tolerance and �(k) = x

(k+1)�x

(k).
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3. Approximation of Functions and Data

We consider the approximation of functions and data, specifically by means of interpolation and
the least–squares method.

3.1 Motivations and Examples

We illustrate through examples the motivations behind the need to approximate functions and data.

⌥ Example 3.1 Let us assume to be interested in computing the integral I of a function f (x) in the

interval [a,b], i.e. I = I( f ) =
Z b

a
f (x)dx, but we are unable to provide a closed form solution for

the function at hand. One possibility consists in approximating f (x) with another function ef (x)

which can be integrated in closed form as eI = I(ef ) =
Z b

a
ef (x)dx such that eI ' I.

⌥

⌥ Example 3.2 By assuming that a function f (x) is known only through its evaluation in a set
of n+1 nodes {xi}n

i=0, i.e. the data couples {(xi, f (xi))}n
i=0, we may be interested in defining an

approximation ef (x) of the unknown function f (x).

27
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⌥
⌥ Example 3.3 Given a set of data couples {(xi,yi)}n

i=0, we may want to determine the intermediate
values or make predictions outside the set of n+1 nodes {xi}n

i=0.

⌥

3.1.1 Approximation of functions by Taylor’s polynomials
A manner to approximate a function f 2Cn (Ix0) in a neighborhood Ix0 of a point x0 2 R is based
on the Taylor’s polynomial (expansion) of order n. The Taylor’s expansion of f (x) around x0 reads:

ef (x) = f (x0)+
n

Â
i=1

1
i!

f (i)(x0)(x� x0)
i.

However, the approximation of f (x) with ef (x) presents some drawbacks. First, the evaluation of
n derivatives of f (x) is required, which may be computationally expensive. Then, the Taylor’s
expansion is accurate only in a neighborhood Ix0 of x0, while generally inaccurate “far” from x0.

⌥ Example 3.4 We consider the Taylor’s expansion of f (x) =
1
x

of order n, say efn(x), around
x0 = 1.

Since f (i)(x) = (�1)i i!x�(i+1) for i =
0,1, . . . ,n, we have ef (x) = efn(x) = 1 +

n

Â
i=1

(�1)n (x�1)i. As reported in the figure,

the approximations provided by efn(x) may
be very inaccurate “far” from x0 = 1.

⌥
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3.2 Interpolation
We introduce and define the concept of interpolation and list different types of interpolations.

Definition 3.1 We consider a set of n+1 data couples {(xi,yi)}n
i=0 with {xi}n

i=0 n+1 distinct
nodes, i.e. such that xi 6= x j for all i 6= j for i, j = 0, . . . ,n; in the case the function f (x) is
known, we set yi = f (xi) for all i = 0, . . . ,n. Interpolating the data couples {(xi,yi)}n

i=0 means
determining the approximate function ef (x) such that ef (xi) = yi for all i = 0, . . . ,n or, if f (x) is
known, such that ef (xi) = f (xi) for all i = 0, . . . ,n. The function ef (x) is called interpolant of the
data at the nodes.

There exist different types of interpolation. For example:
• polynomial interpolation, for which ef (x) = a0 +a1x+ · · ·+anxn for some n+1 coefficients

a0,a1, . . .;

• rational interpolation, for which ef (x) =
a0 +a1x+ · · ·+akxk

ak+1 +ak+2x+ · · ·+ak+n+1xn for some coefficients

a0,a1, . . . with k,n � 0;

• trigonometric interpolation, for which ef (x) =
M

Â
j=�M

a j ei j x, being i the imaginary unit (i2 =

�1) and ei j x = cos( j x)+ i sin( j x), for some M and complex coefficients a j.
• piecewise polynomial interpolation;
• splines;
• ...

3.2.1 Lagrange interpolating polynomials
We consider the polynomial interpolation, specifically determined as Lagrange interpolating poly-
nomials. The polynomial interpolation is based on the following result which determines the corre-
spondence between the number of distinct nodes and the degree of the interpolant.

Proposition 3.1 For any set of data couples {(xi,yi)}n
i=0, being {xi}n

i=0 n+1 distinct nodes, there
exists an unique polynomial, say Pn(x), of degree less than or equal to n, such that Pn(xi) = yi
for all i = 0, . . . ,n. Pn(x) 2 Pn is called interpolating polynomial of the data at the nodes {xi}n

i=0.
If f (x) is a continuous function for which yi = f (xi) for all i = 0, . . . ,n, then Pn f (x) 2 Pn is the
interpolating polynomial of the function f (x) at the nodes {xi}n

i=0.

We recall that Pn indicates the set of polynomials of degree less than or equal to n.

⌥ Example 3.5 We illustrate two cases for which n = 1 (left) and n = 2 (right).

⌥
We need to determine the interpolating polynomial Pn(x) (or Pn f (x)), which assumes the expres-
sion Pn(x) = a0 +a1x+ · · ·+anxn; the goal consists in computing the coefficients {ai}n

i=0 of such
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polynomial of degree n. With this aim, we consider a special family of polynomials associated to
the n+1 distinct nodes {xi}n

i=0.

Definition 3.2 For a set of n+ 1 distinct nodes {xi}n
i=0, the Lagrange characteristic function

associated to the node xk, say jk 2 Pn, is a polynomial of degree n such that jk(xi) = dki for all

i = 0, . . . ,n, where dki =

⇢

0 if i 6= k
1 if i = k , for which:

jk(x) =
n

’
i=0
i 6=k

x� xi

xk � xi
.

The set {jk(x)}n
k=0 is the basis of Lagrange characteristic polynomials.

⌥ Example 3.6 We illustrate the bases of Lagrange characteristic polynomials for n = 1 and n = 2.

n = 1

j0(x) =
x� x1

x0 � x1
2 P1

j1(x) =
x� x0

x1 � x0
2 P1

n = 2

j0(x) =
x� x1

x0 � x1

x� x2

x0 � x2
2 P2

j1(x) =
x� x0

x1 � x0

x� x2

x1 � x2
2 P2

j2(x) =
x� x0

x2 � x0

x� x1

x2 � x1
2 P2

⌥

Definition 3.3 Given the basis of Lagrange characteristic polynomials {jk(x)}n
k=0 associated

to the n+1 distinct nodes {xi}n
i=0, the Lagrange interpolating polynomial of the data couples

{(xi,yi)}n
i=0 is:

Pn(x) =
n

Â
k=0

yk jk(x).

If the function f (x) is given and is continuous, the Lagrange interpolating polynomial of the
function f (x) at the nodes {xi}n

i=0 is:

Pn f (x) =
n

Â
k=0

f (xk)jk(x).

Remark 3.1 The Lagrange interpolating polynomial Pn(x) interpolates the data at the nodes; in-

deed, Pn(xi) =
n

Â
k=0

yk jk(xi) =
n

Â
k=0

yk dki = yi for all i= 0, . . . ,n. Analogously, Pn f (x) interpolates

the function f (x) at the nodes.
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The Lagrange interpolating polynomial Pn(x) 2 Pn uses the basis of Lagrange characteristic
polynomials {jk(x)}n

k=0 to determine the coefficients {ai}n
i=0 of such polynomial of degree n, i.e.

Pn(x) =
n

Â
k=0

yk jk(x) = a0 +a1x+ · · ·+anxn.

⌥ Example 3.7 We consider the Lagrange polynomial interpolation of the data couples {(1,3)},
{(2,2)}, and {(4,6)} for which n = 2. Following Example 3.6, we have x0 = 1, x1 = 2, and x2 = 4,

for which j0(x) =
1
3
(x�2)(x�4) =

1
3

x2 �2x+
8
3

, j1(x) =�1
2
(x�1)(x�4) =�1

2
x2 +

5
2

x+2,

and j2(x) =
1
6
(x�1)(x�2) =

1
6

x2� 1
2

x+
1
3

. The Lagrange interpolating polynomial of the data is

the polynomial of degree n = 2 P2(x) = y0 j0(x)+y1 j1(x)+y2 j2(x) = x2 �4x+6, being y0 = 3,
y1 = 2, and y3 = 6. ⌥

Definition 3.4 For a continuous function f (x) and the interval I = [a,b] such that the n+1 nodes
are ordered as a = x0 < x1 < · · ·< xn = b, we define the error function En f (x) := f (x)�Pn f (x)
associated to the interpolating polynomial Pn f (x). The error is en( f ) := max

x2I
|En f (x)|.

Remark 3.2 Pn f (x) interpolates f (x) at the nodes, indeed En f (xi) = 0 for all i = 0, . . . ,n.

⌥ Example 3.8 Given the function f (x) = sin(x)+
1
4

sin
⇣

2px+
p

3
⌘

+
1
10

sin
⇣

4px+
p

7
⌘

, we
consider its polynomial interpolation over n+1 equally spaced nodes in I = [0,2].

We set the polynomial degree n = 6 for
which we obtain the interpolating polyno-
mial P6 f (x) of f (x) at the nodes x0 = 0,

x1 =
1
3

, x2 =
2
3

, x3 = 1, x4 =
4
3

, x5 =
5
3

,
and x6 = 2. We also plot the error function
E6 f (x) = f (x)�P6 f (x), for which we ob-
serve that E6 f (xi) = 0 for all i = 0, . . . ,6.

⌥

Proposition 3.2 Let us consider n+1 distinct nodes {xi}n
i=0 in an interval I = [a,b] such that

a = x0 < x1 < · · · < xn = b and the polynomial interpolant Pn f (x) of a function f (x) in such
nodes. Then, if f 2Cn+1(I), for all x 2 I there exists x = x (x) 2 I such that:

En f (x) =
1

(n+1)!
f (n+1)(x (x))wn(x), (3.1)

where wn(x) :=
n

’
i=0

(x� xi). Moreover, the error en( f ) is bounded by the error estimator een( f )

as:

en( f ) een( f ) :=
1

(n+1)!
max
x2I

�

�

�

f (n+1)(x)
�

�

�

max
x2I

|wn(x)| . (3.2)
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Proposition 3.3 Let us consider n+ 1 equally spaced nodes {xi}n
i=0 in the interval I = [a,b]

such that xi = x0 + ih for i = 0, . . . ,n with x0 = a, xn = b, and h =
b�a

n
, then, by recalling the

definition of wn(x) in Proposition 3.2, we have:

max
x2I

|wn(x)|
n!
4

hn+1 =
n!
4

✓

b�a
n

◆n+1

.

Therefore, from Eq. (3.2), the error en( f ) is bounded as:

en( f ) een( f ) :=
hn+1

4(n+1)
max
x2I

�

�

�

f (n+1)(x)
�

�

�

=
1

4(n+1)

✓

b�a
n

◆n+1

max
x2I

�

�

�

f (n+1)(x)
�

�

�

. (3.3)

Corollary 3.4 Under the same hypotheses of Proposition 3.3, we have:

max
x2I

�

� f 0(x)� (Pn f )0 (x)
�

�Cn hn max
x2I

�

�

�

f (n+1)(x)
�

�

�

for some positive constant Cn.

Remark 3.3 If the n+1 nodes are equally spaced in the interval I, the error en( f ) may tend to
zero or not for n !+• depending on the function f (x) to be interpolated. From Eq. (3.3), we ob-

serve that lim
n!+•

hn+1

4(n+1)
= 0. Conversely, max

x2I

�

�

�

f (n+1)(x)
�

�

�

may grow with n; indeed, there exist

functions for which lim
n!+•

max
x2I

�

�

�

f (n+1)(x)
�

�

�

=+•. In these cases, the growth of max
x2I

�

�

�

f (n+1)(x)
�

�

�

may not be compensated by the decrease of
hn+1

4(n+1)
with n, for which lim

n!+•
een( f ) = +•; hence,

the error estimator een( f ) “blows up” and typically the error en( f ) behaves in a similar manner.
The so called Runge phenomenon is an instance of such behavior, for which the error function
En f (x) tends to “blow up" for increasing values of n in proximity of the borders of the interval I
when equally spaced nodes are used for the polynomial interpolation.

⌥ Example 3.9 We consider the polynomial interpolation of the Runge function f (x) =
1

1+ x2 over

n+1 equally spaced nodes in the interval I = [�5,5]. In this case, the interpolating polynomials
Pn f (x) of f (x) exhibit the so called Runge phenomenon for increasing values of n as it is visible
in proximity of the boundaries of the interval I. Moreover, lim

n!+•
en( f ) = +•.

n = 8 n = 10

⌥



3.2 Interpolation 33

Remark 3.4 An other important issue which may arise with polynomial interpolation on equally
spaced nodes concerns the stability of the interpolating polynomial. Indeed, using equally spaced
n+1 nodes in the interval I may lead to a significant sensitivity of the interpolating polynomial
Pn(x), or Pn f (x) if the function f (x) is known, to perturbations on the data.

⌥ Example 3.10 We highlight such stability issue by considering the polynomial interpolation
of f (x) = sin(px) over n+1 equally spaced nodes in the interval I = [�1,1]. By setting n = 21
we obtain the polynomial interpolant P21 f (x) which qualitatively coincides with f (x). We apply
now the polynomial interpolation to a perturbed function f

e

(x) = f (x)+ e(x), with e(x) a random
function such that |e(x)|< 10�3 for all x 2 I. Its polynomial interpolant of degree n = 21 P21 f

e

(x)
is very sensible to this “small” perturbation, being very different from P21 f (x).

P21 f (x) P21 f
e

(x)

⌥
A remedy to mitigate the Runge phenomenon and stability issues for polynomial interpolation

consists in using nodes which are not equally spaced in the interval I. The following definition
provides a special family of nodes that can be used for polynomial interpolation.

Definition 3.5 For a given n � 1, the n+1 Chebyshev–Gauss–Lobatto nodes in the reference
interval bI = [�1,1] are:

bxi =�cos
⇣

p

n
i
⌘

i = 0, . . . ,n;

in the general interval I = [a,b] the n+1 Chebyshev–Gauss–Lobatto nodes are:

xi =
a+b

2
+

b�a
2
bxi i = 0, . . . ,n.

⌥ Example 3.11 We graphically highlight the n+1 Chebyshev–Gauss–Lobatto nodes {bxi}n
i=0 in

the reference interval bI = [�1,1] for n = 4 (left) and n = 9 (right).

⌥
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Proposition 3.5 If f 2 Cn+1(I), with the interval I = [a,b], and the n+ 1 Chebyshev–Gauss–
Lobatto are used in I, then lim

n!+•
Pn f (x) = f (x) for all x 2 I, i.e. lim

n!+•
en( f ) = 0, and the

stability issues are mitigated.

⌥ Example 3.12 By recalling and using the same data of Examples 3.9 and 3.10, we show that the
use of Chebyshev–Gauss–Lobatto (CGL) nodes avoids the insurgency of the Runge phenomenon
and mitigates the stability issues of polynomial interpolation, respectively.

n = 8 with CGL nodes n = 10 with CGL nodes

P21 f
e

(x) with CGL nodes

⌥
As anticipated, the Lagrange interpolating polynomial Pn(x) 2 Pn uses the basis of Lagrange

characteristic polynomials {jk(x)}n
k=0 to determine the coefficients {ai}n

i=0 of this polynomial,

i.e. Pn(x) =
n

Â
k=0

yk jk(x) = a0 +a1x+ · · ·+anxn. An alternative approach to Lagrange polynomial

interpolation consists in computing directly the n+ 1 coefficients a = (a0,a1, . . . ,an)
T 2 Rn+1

by enforcing the n+ 1 interpolation constraints Pn(xi) = yi for all i = 0, . . . ,n; i.e., Pn(xi) =
a0 +a1xi + · · ·+anxn

i = yi for all i = 0, . . . ,n. The problem boils down to solve the following linear
system:

Ba = y (3.4)

where B 2 R(n+1)⇥(n+1) is the Vandermonde matrix, with Bi j = (xi�1)
j�1 for i, j = 1, . . . ,n+ 1,

and y = (y0,y1, . . . ,yn)
T 2 Rn+1. The linear system (3.4) admits an unique solution if and only if

det(B) 6= 0, i.e. if and only if the n+ 1 nodes {xi}n
i=0 are distinct. We remark that interpolating

polynomials computed by solving the linear system (3.4) may suffer stability issues already for
relatively “small” values of n, due to the large conditioning numbers typically associated to the
matrix B.
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Remark 3.5 The polynomial interpolation is in general not adequate to extrapolate information
outside the interval I containing the nodes (see e.g. Example 3.8).

3.2.2 Trigonometric interpolation
We consider the trigonometric interpolation which uses trigonometric basis functions and it is
also referred as discrete Fourier series; such kind of interpolation is used for periodic signals
and functions. With this aim, we consider a periodic function f : [0,2p] ! C, i.e. such that
f (0) = f (2p); i indicates the imaginary unit such that i

2 =�1.

Definition 3.6 Given n+1 nodes
�

x j
 n

j=0 such that x j = j h for j = 0, . . . ,n with h =
2p

n+1
, the

trigonometric interpolant of the periodic function f : [0,2p]! C, say It f (x), is:

It f (x) =
M+µ

Â
k=�(M+µ)

eck ei k x,

where:

M =

⇢

n/2 if n is even
(n�1)/2 if n is odd , µ =

⇢

0 if n is even
1 if n is odd ,

eck =

⇢

ck for k =�M, . . . ,M
ck/2 if k =�(M+1) or M+1 ,

and

ck =
1

n+1

n

Â
j=0

f (x j)e�i k j h.

The coefficients {ck}n
k=0 2 C and ei k x = cos(k x)+ i sin(k x). If f (x) is a real valued function (i.e.

f (x) 2 R for all x 2 R), then also the trigonometric interpolant is real valued (i.e. It f (x) 2 R for all
x 2 R); indeed, in this case, c�k = ck for k = 0, . . . ,n.

Remark 3.6 The trigonometric interpolant It f (x) interpolates f (x) at the n+1 nodes
�

x j
 n

j=0,
indeed It f (x j) = f (x j) for all j = 0, . . . ,n.

The computation of the coefficients {ck}n
k=0 according to the above mentioned procedure requires

O(n2) flops; instead, using the Fast Fourier Transform (FFT) only requires O(n logn) flops.

3.2.3 Piecewise polynomial interpolation
Piecewise polynomial interpolation is also known as composite interpolation and approximates
a function f (x) locally with polynomials. Piecewise polynomial interpolation is a good alter-
native to polynomial interpolation with equally spaced nodes to extract information inside an
interval.

Definition 3.7 Let us consider n+1 distinct nodes {xi}n
i=0 in the interval I = [a,b] such that a =

x0 < x1 < · · ·< xn = b for which n subintervals Ii = [xi,xi+1] are defined for i = 0, . . . ,n�1; we
indicate with H := max

i=0,...,n�1
|Ii|= max

i=0,...,n�1
(xi+1 � xi) the characteristic size of such subintervals.

Given the set of data couples {(xi,yi)}n
i=0, the piecewise linear interpolating polynomial PH

1 (x)
of the data is a piecewise polynomial of degree 1 such that PH

1 (x) 2 P1 for all x 2 Ii and



36 Chapter 3. Approximation of Functions and Data

i = 0, . . . ,n�1 (i.e. PH
1 (x)|Ii 2 P1 for all i = 0, . . . ,n�1), with:

PH
1 (x) = yi +

yi+1 � yi

xi+1 � xi
x for all i = 0, . . . ,n�1.

If the function f 2C0(I) is known, then the piecewise linear interpolating polynomial PH
1 f (x)

of the function f (x) at the nodes is PH
1 f (x)|Ii 2 P1 for all i = 0, . . . ,n�1, with:

PH
1 f (x) = yi +

f (xi+1)� f (xi)

xi+1 � xi
x for all i = 0, . . . ,n�1.

⌥ Example 3.13 We report the piecewise linear interpolants of n+1 data couples, say PH
1 (x), and

of a continuous function f (x), say PH
1 f (x), in n+1 nodes in the interval I; specifically, n = 4 (i.e.

n+1 = 5 nodes are used). The characteristic size of the subintervals {Ii}3
i=0 is H = max

i=0,1,2,3
|Ii|.

PH
1 (x) PH

1 f (x)

⌥

Definition 3.8 If the function f 2C0(I) is known, we define the error associated to the piecewise
linear interpolating polynomial PH

1 f (x) as eH
1 ( f ) := max

x2I

�

� f (x)�PH
1 f (x)

�

�.

Proposition 3.6 If f 2C2(I), then the error eH
1 ( f ) associated to the piecewise linear interpolating

polynomial PH
1 f (x) can be bounded by the error estimator eeH

1 ( f ) as:

eH
1 ( f ) eeH

1 ( f ) :=
H2

8
max
x2I

�

� f 00(x)
�

� ,

for which the error converges to zero with order 2 in H (quadratically).

In analogy with PH
1 (x), one can define the piecewise quadratic polynomial PH

2 (x) as PH
2 (x)|Ii 2

P2 for all the subintervals Ii of I from i = 0, . . . ,n� 1; if f 2 C0(I) is known, then we use the
notation PH

2 f (x). Similarly, one can define the piecewise interpolating polynomial of degree r � 1
PH

r (x) as PH
r (x)|Ii 2 Pr for all i = 0, . . . ,n�1 (or PH

r f (x) if f 2C0(I) is known).

⌥ Example 3.14 We consider the piecewise quadratic interpolation of a continuous function f (x),
say PH

2 f (x), over n+1 nodes in the interval I; specifically, we set n = 4.
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The piecewise quadratic interpolant PH
2 f (x) in-

terpolates f (x) at the n+ 1 = 5 nodes and at in-
termediate points internal to each subinterval of I
(as for example corresponding to the mid–points
of the subintervals).

⌥

Proposition 3.7 If f 2 Cr+1(I), then the error eH
r ( f ) := max

x2I

�

� f (x)�PH
r f (x)

�

� associated to

the piecewise interpolating polynomial of degree r � 1 PH
r f (x) can be bounded by the error

estimator eeH
r ( f ) as:

eH
r ( f ) eeH

r ( f ) :=Cr Hr+1 max
x2I

�

�

�

f (r+1)(x)
�

�

�

,

with Cr a positive constant, for which the error converges to zero with order r+1 in H.

Remark 3.7 Piecewise interpolating polynomials PH
r f (x) of any degree r � 1 are only C0–

continuous across the subintervals (internal nodes); see e.g. Example 3.14.

3.2.4 Spline functions
Spline functions, or simply splines, are piecewise interpolating polynomials which are smoother than
standard piecewise polynomials PH

r f (x) across the subintervals. Splines and their generalizations
(B–splines and NURBS) are widely used in Computer Graphics and industrial applications for
which high regularity of the interpolants is necessary.

Definition 3.9 A cubic spline function, say s3(x), is a piecewise interpolating polynomial of
degree 3 which is C2–continuous across the internal nodes of the interval I. Specifically, given
n+ 1 nodes in I = [x0,xn] with x0 < x1 < · · · < xn and the subintervals Ii = [xi,xi+1] for i =
0, . . . ,n�1, we have:

s3(x)|Ii 2 P3 for all i = 0, . . . ,n�1 and s003(x
�
i ) = s003(x

+
i ) for all i = 1, . . . ,n�1.

We can write s3(x)|Ii = a0,i +a1,ix+a2,ix2 +a3,ix3 for all i = 0, . . . ,n�1, with the 4n coefficients
�

a j,i
 

to be determined for j = 0,1,2,3 and i = 0, . . . ,n�1. In order to obtain the coefficients of
s3(x) we impose the following 4n�2 constraints according to Definition 3.9:

s3(xi) = yi (or s3(xi) = f (xi) if f is known) for all i = 0, . . . ,n,

s3(x�i ) = s3(x+i ), s03(x
�
i ) = s03(x

+
i ), s003(x

�
i ) = s003(x

+
i ) for all i = 1, . . . ,n�1.

In order to fully determine s3(x) one needs to enforce 2 additional constraints, whose choice
determine the type of cubic spline.

Definition 3.10 If one sets s003(x0) = s003(xn) = 0, then s3(x) is a natural interpolating cubic spline.
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If one sets s0003 (x
�
1 ) = s0003 (x

+
1 ) and s0003 (x

�
n�1) = s0003 (x

+
n�1), then s3(x) is a not–a–knot interpolating

cubic spline.

The MATLAB command spline considers not–a–knot interpolating cubic splines.

⌥ Example 3.15 We consider the interpolation of a set of n+1 data by a not–a–knot interpolating
cubic spline s3(x); specifically, n = 4.

The cubic spline s3(x) interpolates the data at the
n + 1 = 5 nodes {xi}4

i=0 and is C2–continuous
across each internal node {xi}3

i=1.

⌥

Proposition 3.8 Let us consider n+1 distinct nodes {xi}n
i=0 delimiting the interval I = [x0,xn]

for which n subintervals Ii = [xi,xi+1] are defined for i = 0, . . . ,n�1 and H := max
i=0,...,n�1

|Ii| is the

characteristic size of such subintervals. Then, if f 2C4(I) and s3(x) is its natural interpolating
cubic spline at the nodes, we have the following error estimates:

max
x2I

�

�

�

f (k)(x)� s(k)3 (x)
�

�

�

Ck H4�k max
x2I

�

�

�

f (4)(x)
�

�

�

for k = 0,1,2

and

max
x2I\{x1,...,xn�1}

�

� f 000(x)� s0003 (x)
�

�C3 H3 max
x2I

�

�

�

f (4)(x)
�

�

�

,

with Ck > 0 positive constants, for which the convergence order of the error is 4� k in H
depending on the order of derivation k = 0,1,2,3.

3.3 Least–Squares Method

The least–squares approximation is ideal to extract information from a large set of data, both with
and without uncertainty and noise, as well as to make predictions outside the interval in which
these data are available.

Definition 3.11 Given the set of data couples {(xi,yi)}n
i=0 (or {(xi, f (xi))}n

i=0 if the function f (x)
is given) and an integer m � 0, we look for an approximating polynomial efm(x) of degree m such
that:

n

Â
i=0

⇣

yi � efm(xi)
⌘2


n

Â
i=0

(yi � pm(xi))
2 for all pm 2 Pm.

If efm 2 Pm exists, then it is called least–squares approximating polynomial of degree m of the
data (or the function f (x)).
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Remark 3.8 By convention, we assume that the nodes {xi}n
i=0 are distinct and 0  m  n. In a

typical scenario in which the least–squares method is used, one has 0  m ⌧ n.

Remark 3.9 The least–squares approximating polynomial efm(x) does not in general interpolate
the data (or the function f (x)) at the nodes. Specifically, only if m = n one can ensure that
efm(xi) = yi (or efm(xi) = f (xi)) for all i = 0, . . . ,n; indeed, in this case, efm(x) coincides with the
polynomial interpolant Pn(x) of degree n (or Pn f (x)).

⌥ Example 3.16 We graphically represent the least–squares approximating polynomials efm(x) of
degrees m for two relatively large sets of data {(xi,yi)}n

i=0, with n = 100. We consider m = 1 and
2 (left) and m = 2 and 3 (right).

⌥

Definition 3.12 Following Definition 3.11, the least–squares approximating polynomial ef1(x) of
degree m = 1 is called regression line or least–squares straight line.

As for the polynomial interpolation, determining the least–squares approximating polynomial efm(x)
of degree m consists in determining its m+ 1 coefficients {ai}m

i=0; indeed, efm(x) = a0 + a1x+
· · ·+amxm. With this aim, we define the coefficients vector a = (a0,a1, . . . ,am)

T 2 Rm+1 and the
functional F : Rm+1 ! R as:

F(b) =
n

Â
i=0

[yi � (b0 +b1xi + · · ·+bmxm
i )]

2 ,

which is associated to the set of data couples {(xi,yi)}n
i=0 for the general coefficient vector b =

(b0,b1, . . . ,bm)
T 2 Rm+1. Then, the least–squares method consists in determining the coefficients

vector a of the polynomial efm(x) of degree m such that:

F(a) = min
b2Rm+1

F(b).

Since F is differentiable, the previous minimization problem is equivalent to solve the following
differential problem:

find a 2 Rm+1 :
∂F
∂b j

(a) = 0 for all j = 0, . . . ,m. (3.5)

In turn, such differential problem reduces into solving the following linear system:

Aa = q, (3.6)
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where A 2 R(m+1)⇥(m+1) and q 2 Rm+1 read:

A =

2

6

6

6

6

6

6

4

(n+1) Ân
i=0 xi · · · Ân

i=0 xm
i

Ân
i=0 xi Ân

i=0 x2
i · · · Ân

i=0 xm+1
i

...
...

...

Ân
i=0 xm

i Ân
i=0 xm+1

i · · · Ân
i=0 x2m

i

3

7

7

7

7

7

7

5

and q =

2

6

6

6

6

6

6

4

Ân
i=0 yi

Ân
i=0 xi yi

...

Ân
i=0 xm

i yi

3

7

7

7

7

7

7

5

,

respectively. By recalling the Vandermonde matrix B 2 R(n+1)⇥(m+1), with Bi j = (xi�1)
j�1 for

i = 1, . . . ,n+1 and j = 1, . . . ,m+1, and the data vector y = (y0,y1, . . . ,yn)
T 2 Rn+1, we observe

that:

A = BT B and q = BT
y,

respectively.

Remark 3.10 The linear system (3.6) is a generalization of the linear system (3.4) used for the
polynomial interpolation. As a matter of fact, if the nodes are distinct and m = n, we obtain that
efm(x) = Pn(x) and solving the linear systems (3.4) and (3.6) yields equivalent results.

⌥ Example 3.17 We illustrate the derivation of the linear system (3.6) for m = 1 (i.e. ef1(x) is the
regression line) and n � m. In this case, the functional F(b) reads:

F(b) =
n

Â
i=0

[yi � (b0 +b1xi)]
2 =

n

Â
i=0

⇥

y2
i +b2

0 +b2
1x2

i �2b0yi �2b1xiyi +2b0b1xi
⇤

.

In order to formulate the problem as in Eq. (3.5), we compute the partial derivatives of F:

∂F
∂b0

(b) =
n

Â
i=0

[2b0 �2yi +2b1xi] ,

∂F
∂b1

(b) =
n

Â
i=0

⇥

2b1x2
i �2xiyi +2b0xi

⇤

.

Then, problem (3.5) can be written as the linear system (3.6) with A 2 R2⇥2 and q 2 R2, being:

A =

"

(n+1) Ân
i=0 xi

Ân
i=0 xi Ân

i=0 x2
i

#

and q =

"

Ân
i=0 yi

Ân
i=0 xi yi

#

,

respectively. Notice that, in this case, the Vandermonde matrix B 2 R(n+1)⇥2 reads:

B =

2

6

6

6

6

6

4

1 x0

1 x1

...
...

1 xn

3

7

7

7

7

7

5

.

⌥
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4. Numerical Differentiation

We briefly consider the approximation of derivatives of functions, a topic commonly referred as
numerical derivation or numerical differentiation.

4.1 Goal and Examples

Given a function f 2C1((a,b)), we aim at approximating f 0(x) for some x 2 (a,b)✓ R. Indeed,
for a known function f (x), one may prefer to not explicitly evaluate f 0(x) for some x 2 (a,b) since
this could be computationally expensive.

⌥ Example 4.1 Numerical derivation is necessary if only the set of data couples {(xi,yi)}n
i=0 is

provided and not the function f (x) from which these are eventually obtained. In such case, one
may still be interested in providing information on the first derivative of the unknown function f (x)
at one or all the nodes {xi}n

i=0. ⌥

4.2 Finite Differences Schemes

We consider some finite differences schemes for the approximation of f 0(x) for some x 2 (a,b).

4.2.1 Forward and backward finite differences
Definition 4.1 Given a function f (x) and the step size h > 0, the approximation of f 0(x) in some
x 2 (a,b)✓ R by the forward finite differences scheme is defined as:

d+ f (x) :=
f (x+h)� f (x)

h
,

while by the backward finite differences scheme as:

d� f (x) :=
f (x)� f (x�h)

h
.

41
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⌥ Example 4.2 We graphically illustrate the forward (left) and backward (right) finite differences
schemes for the approximation of f 0(x) for some h > 0; with this aim, we plot the straight lines of
slopes d+ f (x) and d� f (x), respectively.

Forward finite differences Backward finite differences
d+ f (x) d� f (x)

⌥

Proposition 4.1 If f 2 C2((a,b)) and x 2 (a,b), the error E+ f (x) associated to the forward
finite differences scheme is:

E+ f (x) := f 0(x)�d+ f (x) =�1
2

h f 00(x+) for some x+ 2 [x,x+h],

while the error E+ f (x) associated to the backward finite differences scheme reads:

E� f (x) := f 0(x)�d� f (x) =
1
2

h f 00(x�) for some x� 2 [x�h,x].

Proof. (Forward finite differences scheme). We consider the Taylor’s expansion of f (x+h) around

x, obtaining f (x+ h) = f (x) + f 0(x)h+
1
2

f 00(x+)h2 for some x+ 2 [x,x+ h]; by applying the
definition of the error E+ f (x), the result follows. The proof for backward finite differences follows
in a similar manner. ⌅

Remark 4.1 The forward and backward finite differences schemes are methods of order 1;
indeed, the errors E+ f (x) and E� f (x) converge to zero with order 1 in the step size h.

We observe that, if f 2 P1, we have d+ f (x) = d� f (x) = f 0(x) for all x 2 R.

4.2.2 Centered finite differences
Definition 4.2 Given a function f (x) and the step size h > 0, the approximation of f 0(x) in some
x 2 (a,b)✓ R by the centered finite differences scheme is defined as:

dc f (x) :=
f (x+h)� f (x�h)

2h
.
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⌥ Example 4.3 We graphically illustrate the centered finite differences scheme for the approxima-
tion of f 0(x) for some h > 0; specifically, we plot the straight line of slope dc f (x).

Centered finite differences, dc f (x)

⌥

Proposition 4.2 If f 2 C3((a,b)) and x 2 (a,b), the error Ec f (x) associated to the centered
finite differences scheme is:

Ec f (x) := f 0(x)�dc f (x) =� 1
12

h2 ⇥ f 000(x+)+ f 000(x�)
⇤

for some x+ 2 [x,x+h] and x� 2 [x�h,x].

Proof. We consider the Taylor’s expansion of f (x+ h) around x, obtaining f (x+ h) = f (x) +

f 0(x)h+
1
2

f 00(x)h2 +
1
6

f 000(x+)h3 for some x+ 2 [x,x+ h]; similarly, the Taylor’s expansion of

f (x�h) around x is f (x�h) = f (x)� f 0(x)h+
1
2

f 00(x)h2 � 1
6

f 000(x�)h3 for some x� 2 [x�h,x].
Then, by applying the definition of the error Ec f (x), the result follows. ⌅

Remark 4.2 The centered finite differences scheme is a method of order 2; indeed, the error
Ec f (x) converges to zero with order 2 in the step size h.

We observe that, if f 2 P2, we have dc f (x) = f 0(x) for all x 2 R.
Let us now suppose to be interested in approximating the first derivative of a function f (x) in

multiple and equally spaced nodes in the interval [a,b], that is xi = a+ ih for all i = 0, . . . ,n, with

h =
b�a

n
; x0 = a and xn = b are the nodes at the boundaries of the interval [a,b]. With this aim,

we consider the centered finite differences scheme. However, this can only be used at the nodes
internal to the interval [a,b] as:

dc f (xi) =
f (xi+1)� f (xi�1)

2h
for all i = 1, . . . ,n�1,

since for x0 and xn the nodes x�1 and xn+1 are not defined, respectively. In order to approx-
imate f 0(x0) and f 0(xn), the forward and backward finite differences schemes can be used as

d+ f (x0) =
f (x1)� f (x0)

h
and d� f (xn) =

f (xn)� f (xn�1)

h
, respectively. However, in this case, the

approximation uses a method of order 2 in the internal nodes {xi}n�1
i=1 and of order 1 in the nodes x0
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and xn. In order to overcome this issue and restore the full convergence order 2 for all the nodes
{xi}n

i=0, one can use the following finite differences schemes in x0 and xn:

dc,0 f (x0) =
�3 f (x0)+4 f (x1)� f (x2)

2h

and

dc,n f (xn) =
f (xn�2)�4 f (xn�1)+3 f (xn)

2h
,

respectively, which yield methods of convergence order 2 in h. We observe that dc,0 f (x0) =
�

P2,{x0,x1,x2} f
�0
(x0) and dc,n f (xn) =

�

P2,{xn�2,xn�1,xn} f
�0
(xn), where P2,{x0,x1,x2} f (x) and

P2,{xn�2,xn�1,xn} f (x) are the polynomials of degree 2 interpolating the function f (x) at the nodes
{xi}2

i=0 and {xi}n
i=n�2, respectively.
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5. Numerical Integration

We consider the numerical approximation of integrals of real valued functions by means of the so
called quadrature formulas (numerical integration).

5.1 Goal and Classification of Quadrature Formulas
Given a function f 2C0([a,b]), the goal consists in numerically approximating its integral in the
interval [a,b], say

I( f ) =
Z b

a
f (x)dx,

by means of suitable quadrature formulas, say Iq( f ) such that Iq( f )' I( f ). Quadrature formulas
can be classified into two main categories: simple and composite quadrature formulas.

• Simple quadrature formulas are based of the approximation of the function f (x) globally
in the interval [a,b] with functions ef (x) which are “easy” to integrate in [a,b] (integrable

in closed form); that is, Iq( f ) = I(ef ) =
Z b

a
ef (x)dx, with ef (x) an approximation of f (x)

for x 2 [a,b]. Typically, for simple quadrature formulas, ef (x) is a polynomial of degree n
interpolating f (x) at n+1 nodes in [a,b].

• Composite quadrature formulas are based on the subdivision of the interval [a,b] into

M subintervals, eventually of the same size H =
b�a

M
, over which the function f (x) is

approximated by a piecewise function ef (x). By indicating the M+1 nodes {xk}M
k=0 as xk = a+

k H for k = 0, . . . ,M, with x0 = a and xM = b, we recall that I( f ) =
M

Â
k=1

Z xk

xk�1

f (x)dx; then, the

composite quadrature formula reads Iq( f ) =
M

Â
k=1

Z xk

xk�1

efk(x)dx, where efk(x) = ef (x)|[xk�1,xk] for

all k= 1, . . . ,M. Typically, for composite quadrature formulas, ef (x) is a piecewise polynomial
of degree n interpolating f (x) at n+1 nodes in each of the subintervals {[xk�1,xk]}M

k=1 of
[a,b].

45
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⌥ Example 5.1 We graphically illustrate hypothetical simple (left) and composite (right) quadra-

ture formulas for the approximation of the integral I( f ) =
Z b

a
f (x)dx of a general function f (x) in

the interval [a,b]; I(ef ) represents the approximated integral.

Simple Composite (M = 3)

⌥
The following definitions are used to characterize the quadrature formulas.

Definition 5.1 The degree of exactness of a quadrature formula is the maximum integer r � 0
such that all the polynomials of degree less than or equal to r are exactly integrated by the
formula, i.e. for which Iq(p)⌘ I(p) for all p 2 Pr.

Definition 5.2 The order of convergence of a composite quadrature formula (also called order of
accuracy) is the convergence order of the associated error in H, the size of the subintervals.

5.2 Mid–point Quadrature Formulas

Definition 5.3 Let us consider a function f (x)2C0([a,b]), then the simple mid–point quadrature
formula is defined as:

Imp( f ) := I (P0 f ) = (b�a) f
✓

a+b
2

◆

,

where P0 f (x) is the polynomial of degree 0 interpolating f (x) at the mid–point x =
a+b

2
of the

interval [a,b]. The composite mid–point quadrature formula is defined as:

Ic
mp( f ) := I

�

PH
0 f
�

= H
M

Â
k=1

f (xk), (5.1)

where PH
0 f (x) is the piecewise polynomial of degree 0 interpolating f (x) at the mid–points

{xk}M
k=1 of the M subintervals of size H =

b�a
M

in which [a,b] is subdivided, i.e. xk =
xk�1 + xk

2
for all k = 1, . . . ,M.

The function f (x) is approximated with ef (x) = P0 f (x) or PH
0 f (x), for which

Z b

a
ef (x)dx yields

the simple and composite quadrature formulas, respectively.



5.2 Mid–point Quadrature Formulas 47

⌥ Example 5.2 We graphically illustrate simple (left) and composite (right) mid–point quadrature
formulas for the approximation of the integral I( f ) of a general function f (x).

Simple, Imp( f ) Composite, Ic
mp( f ) (M = 3)

⌥

Proposition 5.1 If f 2C2([a,b]), the error emp( f ) associated to the simple mid–point quadrature
formula reads:

emp( f ) := I( f )� Imp( f ) =
(b�a)3

24
f 00(x ) for some x 2 [a,b],

while the error ec
mp( f ) associated to the composite mid–point quadrature formula is:

ec
mp( f ) := I( f )� Ic

mp( f ) =
(b�a)

24
H2 f 00(x ) for some x 2 [a,b].

Proof. (Simple mid–point formula). By indicating for simplicity the mid–point of [a,b] as

x =
a+b

2
, we consider the Taylor’s expansion of f (x) around x, which reads f (x) = f (x) +

f 0(x)(x� x)+
1
2

f 0(h(x))(x� x)2 for some h(x) 2 [a,b]. We compute the integral of such expan-

sion, obtaining I( f ) = Imp( f )+ f 0(x)
Z b

a
(x�x)dx+

1
2

f 00(x )
Z b

a
(x�x)2 dx, for some x 2 [a,b], in

virtue of the mean value (Lagrange) theorem. Since
Z b

a
(x�x)dx= 0 and

Z b

a
(x�x)2 dx=

(b�a)3

12
,

the result follows. ⌅

Remark 5.1 The mid–point quadrature formulas have degree of exactness 1; indeed, the errors
emp( f ) and ec

mp( f ) are identically zero for all the polynomials of degree less than or equal to 1
(if f 2 P1, f 00(x ) = 0 for all x 2 R).

Remark 5.2 The composite mid–point quadrature formula has convergence order (order of
accuracy) 2; indeed, the error ec

mp( f ) depends on H2.
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5.3 Trapezoidal Quadrature Formulas

Definition 5.4 Let us consider a function f (x) 2C0([a,b]), then the simple trapezoidal quadra-
ture formula is defined as:

It( f ) := I (P1 f ) = (b�a)
f (a)+ f (b)

2
, (5.2)

where P1 f (x) is the polynomial of degree 1 interpolating f (x) at the nodes a and b. The
composite trapezoidal quadrature formula is defined as:

Ic
t ( f ) := I

�

PH
1 f
�

=
H
2

M

Â
k=1

[ f (xk�1)+ f (xk)] =
H
2
[ f (x0)+ f (xM)]+H

M�1

Â
k=1

f (xk),

where PH
1 f (x) is the piecewise polynomial of degree 1 interpolating f (x) at the nodes {xk}M

k=0

of the M subintervals of size H =
b�a

M
in which [a,b] is subdivided.

⌥ Example 5.3 We graphically illustrate simple (left) and composite (right) trapezoidal quadrature
formulas for the approximation of the integral I( f ) of a general function f (x).

Simple, It( f ) Composite, Ic
t ( f ) (M = 3)

⌥

Proposition 5.2 If f 2C2([a,b]), the error et( f ) associated to the simple trapezoidal quadrature
formula reads:

et( f ) := I( f )� It( f ) =�(b�a)3

12
f 00(x ) for some x 2 [a,b],

while the error ec
t ( f ) associated to the composite trapezoidal quadrature formula is:

ec
t ( f ) := I( f )� Ic

t ( f ) =�(b�a)
12

H2 f 00(x ) for some x 2 [a,b].

Proof. (Simple trapezoidal formula). Since et( f )= I(P1 f ), we have et( f )=
Z b

a
( f (x)�P1 f (x)) dx.

By recalling the error function E1 f (x) of Eq. (3.1) for polynomial interpolation of degree 1 (Propo-

sition 3.2), we have E1 f (x) =
1
2

f 00(h(x))w1(x) for some h(x) 2 [a,b], with w1(x) = (x�a)(x�

b). By using the mean value (Lagrange) theorem, we have et( f ) =
1
2

Z b

a
f 00(h(x))w1(x)dx =
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1
2

f 00(x )
Z b

a
w1(x)dx, for some x 2 [a,b]; then, since

Z b

a
w1(x)dx = �(b�a)3

6
, the result fol-

lows. ⌅

Remark 5.3 The trapezoidal quadrature formulas have degree of exactness 1; indeed, the errors
et( f ) and ec

t ( f ) are identically zero for all the polynomials of degree less than or equal to 1 (if
f 2 P1, f 00(x ) = 0 for all x 2 R).

Remark 5.4 The composite trapezoidal quadrature formula has convergence order (order of
accuracy) 2; indeed, the error ec

t ( f ) depends on H2.

Remark 5.5 We consider the mid–point and trapezoidal quadrature formulas, for which the
errors emp( f ), ec

mp( f ), et( f ), and ec
t ( f ) are given in Propositions 5.1 and 5.3. We remark that,

in general, one cannot ensure that |emp( f )| = 1
2
|et( f )| and

�

�ec
mp( f )

�

� =
1
2
|ec

t ( f )| since f 00(x )
may be evaluated in different values of x 2 [a,b] depending on the formula under consideration.
However, if f 2 P2, one has f 00(x) = C, a constant value, for all x 2 R, for which we have

|emp( f )|= 1
2
|et( f )| and

�

�ec
mp( f )

�

�=
1
2
|ec

t ( f )|; thus, in this specific case, the mid–point formulas
are more accurate than the trapezoidal ones (for the same values of H).

5.4 Simpson Quadrature Formulas

Definition 5.5 Let us consider a function f (x) 2C0([a,b]), then the simple Simpson quadrature
formula is defined as:

Is( f ) := I (P2 f ) =
b�a

6



f (a)+4 f
✓

a+b
2

◆

+ f (b)
�

, (5.3)

with P2 f (x) the polynomial of degree 2 interpolating f (x) at the nodes a, b, and the mid–point
a+b

2
. The composite Simpson quadrature formula is defined as:

Ic
s ( f ) := I

�

PH
2 f
�

=
H
6

M

Â
k=1

[ f (xk�1)+4 f (xk)+ f (xk)] ,

where PH
2 f (x) is the piecewise polynomial of degree 2 interpolating f (x) at the nodes {xk}M

k=0

and mid–points {xk}M
k=1 of the M subintervals of size H =

b�a
M

in which [a,b] is subdivided;

the subintervals mid–points are defined as xk =
xk�1 + xk

2
for all k = 1, . . . ,M.
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⌥ Example 5.4 We illustrate simple (left) and composite (right) Simpson quadrature formulas for
the approximation of the integral I( f ) of a general function f (x).

Simple, Is( f ) Composite, Ic
s ( f ) (M = 3)

⌥

Proposition 5.3 If f 2C4([a,b]), the error es( f ) associated to the simple Simpson quadrature
formula is:

es( f ) := I( f )� Is( f ) =�(b�a)5

2880
f (4)(x ) for some x 2 [a,b],

while the error ec
s( f ) associated to the composite Simpson quadrature formula reads:

ec
s( f ) := I( f )� Ic

s ( f ) =�(b�a)
2880

H4 f (4)(x ) for some x 2 [a,b].

Remark 5.6 The Simpson quadrature formulas possess degree of exactness 3; indeed, the errors
es( f ) and ec

s( f ) are identically zero for all the polynomials of degree less than or equal to 3 (if
f 2 P3, f (4)(x ) = 0 for all x 2 R).

Remark 5.7 The composite Simpson quadrature formula has convergence order (order of
accuracy) 4; indeed, the error ec

s( f ) depends on H4.

5.5 Interpolatory Quadrature Formulas
We consider the case of continuous functions f (x) in the interval [a,b] and specifically simple
quadrature formulas with the aim of providing a generalization of the previous simple formu-
las.

Definition 5.6 Let us consider a function f (x) 2C0([a,b]), then a (simple) interpolatory quadra-
ture formula is defined as:

eI( f ) := I(ef ) =
n

Â
j=0

a j f (y j) , (5.4)
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where ef (x) is a function interpolating f (x) at the n+1 quadrature nodes
�

y j
 n

j=0 in [a,b] and
�

a j
 n

j=0 are the corresponding quadrature weights, with n � 0.

The interpolating function ef (x) should be “easy” to integrate. We remark that there are different
choices for such interpolating function ef (x); its choice determines the method or the family of
interpolatory quadrature formulas.

Remark 5.8 If ef (x) = Pn f (x), the interpolating polynomial of degree n = 0,1,2 at n+1 equally
spaced nodes in [a,b], one obtains the simple mid–point, trapezoidal, and Simpson quadrature

formulas, respectively. Indeed, by setting ef (x) = P0 f (x) for n = 0, a0 = b�a, and y0 =
a+b

2
in Eq. (5.4), one obtains the simple mid–point quadrature formula (5.1). For ef (x) = P1 f (x) with

n= 1, a0 =a1 =
b�a

2
, y0 = a, and y1 = b in Eq. (5.4), one gets the simple trapezoidal quadrature

formula (5.2). Finally, for ef (x) = P2 f (x) with n = 2, a0 = a2 =
b�a

6
, a1 =

2(b�a)
3

, y0 = a,

y1 =
a+b

2
, and y2 = b in Eq. (5.4), one obtains the simple Simpson quadrature formula (5.3).

In general, if one chooses ef (x) = Pn f (x) =
n

Â
k=0

f (xk)jk(x), the Lagrange interpolating polynomial

of degree n � 0 at n+ 1 nodes {xk}n
k=0 in [a,b], with {jk(x)}n

k=0 the corresponding Lagrange
characteristic functions, then the interpolatory formula (5.4) is obtained for the quadrature nodes

y j = x j and weights a j =
Z b

a
j j(x)dx for all j = 0, . . . ,n. In such case, the degree of exactness of

the formulas is r � n.
A minimum objective for interpolatory quadrature formulas (5.4) consists in exactly integrating

constant functions f (x) =C for any n � 0. Since I( f ) = I(C) =C (b�a), we set
n

Â
j=0

a j f (y j) =

n

Â
j=0

a j C =C (b�a), for which we obtain the following condition on the quadrature weigths:

n

Â
j=0

a j = b�a for all n � 0,

regardless of the position of the quadrature nodes.
Interpolatory quadrature formulas (5.4) are specified by n, the quadrature nodes

�

y j
 n

j=0, and
the quadrature weights

�

a j
 n

j=0. However, the quadrature weights and nodes depend on the interval
[a,b]⇢ R at hand. In order to provide general quadrature formulas that can be applied to functions
f (x) in any interval [a,b], the quadrature nodes and weights are specified for the reference interval
[�1,1] and indicated as

�

y j
 n

j=0 and
�

a j
 n

j=0, respectively. Then, quadrature nodes and weights
for the general interval [a,b] can be recovered as:

y j =
a+b

2
+

b�a
2

y j for j = 0, . . . ,n,

and

a j =
b�a

2
a j for j = 0, . . . ,n,

respectively.
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As anticipated, interpolatory quadrature formulas based on Lagrange characteristic polynomials
possess degree of exactness r � n; specifically, for some of these formulas the degree of exactness
r is only equal to n (e.g. for the simple trapezoidal formula for which n = 1). The goal consists
in finding, for a given n � 0, the optimal location of the quadrature nodes

�

y j
 n

j=0 in [�1,1] and
values of the corresponding quadrature weights

�

a j
 n

j=0 such that the degree of exactness of the
interpolatory quadrature formula is maximized.

5.5.1 Gauss–Legendre quadrature formulas
Gauss–Legendre quadrature formulas indicate a family of interpolatory quadrature formulas
obtained by approximating the function f (x) by means of Legendre polynomials. The Legendre
polynomials {Lk(x)}n+1

k=0 in the interval [�1,1] are recursively defined as:

L0(x) = 1, L1(x) = x, and Lk+1(x) =
2k+1
k+1

xLk(x)�
k

k+1
Lk�1(x) for k = 1, . . . ,n;

such polynomials are orthogonal, i.e.
Z 1

�1
Ln+1(x)Lk(x)dx = 0 for all k = 0, . . . ,n.

⌥ Example 5.5 We consider the Legengre polynomials in [�1,1] obtained for n = 3.

L0(x) = 1,

L1(x) = x,

L2(x) =
3
2

xL1(x)�
1
2

L0(x),

L3(x) =
5
3

xL2(x)�
2
3

L1(x),

L4(x) =
7
4

xL3(x)�
3
4

L2(x).

⌥

Definition 5.7 Let us consider a function f (x) 2C0([a,b]), then the Gauss–Legendre quadrature
formula for n � 0 over the reference interval [�1,1] is:

IGL,n =
n

Â
j=0

a

GL
j f

�

yGL
j
�

,

where:

yGL
j := zeros of Ln+1(x) for all j = 0, . . . ,n,

a

GL
j :=

2


1�
⇣

yGL
j

⌘2
�

h

L0
n+1

⇣

yGL
j

⌘i2
for all j = 0, . . . ,n.

Remark 5.9 The degree of exactness of the Gauss–Legendre quadrature formula is r = 2n+1
for all n � 0.
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We report in the following table the quadrature nodes and weights of the Gauss–Legendre quadrature
formulas over the interval [�1,1] for n = 0,1, and 2, as well as the corresponding degrees of
exactness r. Such formula maximizes r for any given n � 0.

n
�

yGL
j
 n

j=0

�

a

GL
j
 n

j=0 r
0 0 2 1 (mid–point formula)

1
⇢

� 1p
3
,+

1p
3

�

{1,1} 3

2

(

�
p

15
5

,0,+
p

15
5

)

⇢

5
9
,
8
9
,
5
9

�

5

We observe that the Gauss–Legendre quadrature formula for n = 0 coincides with the simple
mid–point one.

⌥ Example 5.6 We can verify that the Gauss–Legendre formula for n = 1 has degree of exactness
r = 3, i.e. IGL,1( f ) = I( f ) for all f 2 P3. By taking f (x) = c0 + c1x+ c2x2 + c3x3 for some c0,

c1, c2, and c3 2 R, for example over the reference interval [�1,1], we have I( f ) =
Z 1

�1
f (x)dx =

2c0 +
2
3

c2. By setting n = 1, we have IGL,1( f ) =
�

a

GL
0 +a

GL
1
�

c0 +
�

a

GL
0 yGL

0 +a

GL
1 yGL

1
�

c1 +
⇣

a

GL
0
�

yGL
0
�2

+a1
�

yGL
1
�2
⌘

c2 +
⇣

a0
�

yGL
0
�3

+a1
�

yGL
1
�3
⌘

c3. By enforcing the following con-
straints (i.e. by setting IGL,1( f ) = I( f ) for all c0, c1, c2, and c3 2 R):

8

>

>

>

<

>

>

>

:

a

GL
0 +a

GL
1 = 2,

a

GL
0 yGL

0 +a

GL
1 yGL

1 = 0,
a

GL
0
�

yGL
0
�2

+a1
�

yGL
1
�2

= 2
3 ,

a

GL
0
�

yGL
0
�3

+a

GL
1
�

yGL
1
�3

= 0,

we obtain the quadrature nodes yGL
0 = � 1p

3
and yGL

1 = +
1p
3

and the corresponding weights

a

GL
0 = a

GL
1 = 1; we deduce that the Gauss–Legendre formula IGL,1( f ) exactly integrates the

polynomials of degree 3 regardless of their coefficients c0, c1, c2, and c3 2 R, for which we verify
that the formula has degree of exactness 3. ⌥

5.5.2 Gauss–Legendre–Lobatto quadrature formulas
The Gauss–Legendre quadrature formulas maximize the degree of exactness r for any given n � 0,
but the resulting quadrature nodes are internal the reference interval [�1,1]. However, in some
instances, one may want to include the boundaries of the interval {�1,1} in the set of quadrature
nodes. The Gauss–Legendre–Lobatto quadrature formulas extend the concept of maximizing the
degree of exactness by including the boundaries of the interval as quadrature nodes.

Definition 5.8 Let us consider a function f (x) 2C0([a,b]), then the Gauss–Legendre–Lobatto
quadrature formula for n � 1 over the reference interval [�1,1] is:

IGLL,n =
n

Â
j=0

a

GLL
j f

�

yGLL
j
�

,

where:

yGLL
0 :=�1, yGLL

n :=+1, and yGLL
j := zeros of L0

n(x) for all j = 1, . . . ,n�1,
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a

GLL
j :=

2
n(n+1)

1
h

Ln

⇣

yGLL
j

⌘i2 for all j = 0, . . . ,n.

Remark 5.10 The degree of exactness of the Gauss–Legendre–Lobatto quadrature formula is
r = 2n�1 for all n � 1.

We report in the following table the quadrature nodes and weights of the Gauss–Legendre–Lobatto
quadrature formulas over the interval [�1,1] for n = 1, 2, and 3, as well as the corresponding
degrees of exactness r. Notice that the formula is not defined for n = 0.

n
�

yGLL
j
 n

j=0

�

a

GLL
j
 n

j=0 r
1 {�1,+1} {1,1} 1 (trapezoidal formula)

2 {�1,0,+1}
⇢

1
3
,
4
3
,
1
3

�

3 (Simpson formula)

3
⇢

�1,� 1p
5
,+

1p
5
,+1

� ⇢

1
6
,
5
6
,
5
6
,
1
6

�

5

We observe that the Gauss–Legendre–Lobatto quadrature formulas for n = 1 and 2 coincide with
the simple trapezoidal and Simpson ones, respectively.

5.6 Numerical Integration in Multiple Dimensions
Numerical integration in multiple dimensions, i.e. the integration of continuous functions f : W !
R, with W ⇢Rd for d � 2, is based on the generalization of quadrature formulas. Simple quadrature
formulas are defined for specific domains, as e.g. trapezoids and triangles for d = 2 or tetrahedrons
for d = 3. Numerical quadrature on complex domains is based on composite formulas.

⌥ Example 5.7 Schematic representations of numerical quadrature formulas for d = 2.

simple composite

⌥
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6. Linear Systems

We consider the numerical solution of linear systems both by means of direct and iterative methods.
For simplicity, we consider the case of real valued linear systems, even if several of the consid-
erations and methods presented in this chapter can be straightforwardly used for linear systems
involving complex numbers.

6.1 Motivations, Examples, and Classification of Methods

We briefly introduce the problem and a classification of methods for the numerical approximation
of linear systems.

6.1.1 Goals, examples, and notation

Let us consider a square matrix A 2 Rn⇥n with n � 1, the vector b 2 Rn, and the solution vector
x 2 Rn of the following linear system:

Ax = b. (6.1)

The goal consists in numerically approximating the solution x 2 Rn of such linear system. We
recall the following definition and proposition.

Definition 6.1 The matrix A 2 Rn⇥n with n � 1 is nonsingular if and only if det(A) 6= 0.

Proposition 6.1 If A 2 Rn⇥n is nonsingular, then there exists an unique solution x 2 Rn of the
linear system (6.1).

Regarding the linear system (6.1), we use the following notation to indicate the entries of the matrix
A 2 Rn⇥n, say (A)i j = ai j for i, j = 1, . . . ,n, and the vectors x 2 Rn and b 2 Rn, say (x)i = xi and
(b)i = bi for i = 1, . . . ,n, respectively. We will also use the following notation to indicate the linear

55
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system in terms of the entries of A, b, and x:
8

>

>

>

<

>

>

>

:

a11 x1 +a12 x2 + · · ·+a1n xn = b1
a21 x1 +a22 x2 + · · ·+a2n xn = b2

...
...

... =
...

an1 x1 +an2 x2 + · · ·+ann xn = bn

or

2

6

6

6

4

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

3

7

7

7

5

2

6

6

6

4

x1
x2
...

xn

3

7

7

7

5

=

2

6

6

6

4

b1
b2
...

bn

3

7

7

7

5

.

We remark that linear systems may directly arise from physical problems, i.e. are themselves
mathematical problems. However, in several instances, linear systems are obtained from the
discretization of other mathematical problems. This is the case for differential problems as
Partial Differential Equations (PDEs) or systems of Ordinary Differential Equations for which
the numerical approximation of the problem generally leads to the solution of linear systems; an
example is represented by the finite element method for the spatial approximation of PDEs. In such
instances, the larger is the size n of the linear system, the more accurate is the approximation of the
mathematical problem which generated the linear system; for such problems, one can easily have
O(n) = 105, 106, or even 107.

⌥ Example 6.1 We show in this example that the mathematical problem of the currents in an
electric circuit corresponds to a linear system.

The problem consists in finding the currents i j for j =
1, . . . ,n through the circuit, for n = 7, given the tension
V and the resistances R j of the circuit. The problem is
defined by the balance of the tensions (V =V1 +V2 +
V5+V7, V3 =V2+V4, and V5 =V4+V6), the Kirchhoff
laws (i1 = i2+ i3, i2 = i4+ i5, i3+ i4 = i6, and i5+ i6 =
i7), and the constitutive equations (Vj = R j i j for all
j = 1, . . . ,n).

We obtain the following linear system, whose solution provides the distribution of the currents
�

i j
 n

j=0 in the circuit:
2

6

6

6

6

6

6

6

6

4

R1 R2 0 0 R5 0 R7
0 R2 �R3 R4 0 0 0
0 0 0 R4 �R5 R6 0
1 �1 �1 0 0 0 0
0 1 0 �1 �1 0 0
0 0 1 1 0 �1 0
0 0 0 0 1 1 �1

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

i1
i2
i3
i4
i5
i6
i7

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

V
0
0
0
0
0
0

3

7

7

7

7

7

7

7

7

5

.

⌥

6.1.2 Linear systems and complexity
We need to consider numerical methods and algorithms for the solution of linear systems that can
be effectively implemented in software.

⌥ Example 6.2 We show that the solution of the linear system (6.1) by means of the Cramer rule
may lead to excessive computational costs already for relatively small matrices A. According to the
Cramer rule, the solution x of the linear system (6.1) is computed entry by entry as:

xi =
det
�

Ab

i
�

det(A)
for all i= 1, . . . ,n, with Ab

i :=

2

6

6

6

4

a11 · · · a1(i�1) b1 a1(i+1) · · · a1n
a21 · · · a2(i�1) b2 a2(i+1) · · · a2n

...
...

...
...

...
an1 · · · an(i�1) bn an(i+1) · · · ann

3

7

7

7

5

.
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The solution of the previous linear system with the above rule requires a number of operations
O(3(n+1)!). Therefore, by hypothetically assuming to use of calculators with CPU of different
performances, we estimate the following computational times for relatively small sizes n of the
matrix A (1GHz = 109 flops).

n CPU 1GHz CPU 103 GHz CPU 106 GHz
10 ⇠ 10�1 s ⇠ 10�4 s ⇠ 0s
15 ⇠ 17h ⇠ 1m ⇠ 10�1 s
20 ⇠ 5000 years ⇠ 5 years ⇠ 1.7 days
25 out of reach out of reach ⇠ 40000 years

Even if more efficient algorithms exist for the Cramer rule (e.g. reducing the number of operations
to O(n3.8)), it is clear how inefficient methods may harm the possibility of effectively solving linear
systems. ⌥

We observe that by assuming that the matrix A 2 Rn⇥n is full, in principle, one needs at least
n2 operations to solve the linear system. Even if this is in general very optimistic, one needs to
consider and develop methods for which the number of operations is as closer as possible to this
ideal number. Different considerations hold for sparse matrices, i.e. matrices for which the number
of nonzero entries is O(n)⌧ n2.

Remark 6.1 Solving the linear system (6.1) as x = A�1
b, i.e. by computing the inverse of the

matrix A, is a computationally inefficient procedure which should be avoided even for very small
matrices.

6.1.3 Classification of methods for linear systems
The numerical methods for the solution of linear systems can be classified into two categories:
direct and iterative methods.

Definition 6.2 For a direct method the solution x of the linear system (6.1) is obtained in a finite
number of steps. Conversely, for an iterative method the solution x is obtained, in principle, in an
infinite number of steps.

The choice of a direct or iterative method to solve the linear system (6.1) depends on multiple
factors as the nature, size, and sparsity of the matrix A, as well as the computational resources
available (CPU and memory).

6.2 Direct Methods
We consider direct methods for the solution of the linear system Ax = b of Eq. (6.1) and we analyze
their properties. The basic idea of this family of methods consists in redirecting the solution of
the general linear system Ax = b to the solution of a “simpler” linear system by means of suitable
manipulations of the matrix A.

6.2.1 “Simple” linear systems
We report in the following some examples of “simple” linear system for which their solution is
straightforward. As anticipated, this depends on the matrix A 2 Rn⇥n at hand.

Diagonal matrix
We consider the case of a diagonal matrix D 2 Rn⇥n, i.e. (D)ii = dii for i = 1, . . . ,n and (D)i j = 0
for i, j = 1, . . . ,n, but j 6= i. In this case, the diagonal matrix D and the associated linear system
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Dx = b read:

D =

2

6

6

6

4

d11 0 · · · 0
0 d22 · · · 0
...

...
. . .

...
0 0 · · · dnn

3

7

7

7

5

and

8

>

>

>

<

>

>

>

:

d11 x1 = b1
d22 x2 = b2

... =
...

dnn xn = bn,

respectively; in Eq. (6.1), A = D. The solution x 2 Rn of the diagonal system Dx = b is:

xi =
bi

dii
for all i = 1, . . . ,n,

which is obtained in n operations (divisions).

Remark 6.2 Since D is a diagonal matrix, we have that its determinant is computed as det(D) =
n

’
i=1

dii. It follows that det(D) 6= 0 if and only if dii 6= 0 for all i = 1, . . . ,n.

Lower triangular matrix: forward substitution algorithm

Definition 6.3 L 2 Rn⇥n is a lower triangular matrix if and only its entries are such that (L)i j =
li j 2 R for i = 1, . . . ,n, j = 1, . . . , i and otherwise (L)i j = 0 for i = 1, . . . ,n, j = i+1, . . . ,n; the
lower triangular matrix L reads:

L =

2

6

6

6

6

6

6

6

4

l11 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 0 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · lnn

3

7

7

7

7

7

7

7

5

.

For L 2 Rn⇥n a lower triangular matrix, we consider the solution of the lower triangular system:

Ly = x, i.e.

8

>

>

>

>

>

<

>

>

>

>

>

:

l11 y1 = x1
l21 y1 + l22 y2 = x2
l31 y1 + l32 y2 + l33 y3 = x3

...
...

...
. . . =

...
ln1 y1 + ln2 y2 + ln3 y3 + · · ·+ lnn yn = xn,

where, by referring to Eq. (6.1), we set A = L, y = x, and b = x. The lower triangular system
Ly = x is solved by means of the forward substitutions algorithm, which reads:

y1 =
b1

l11
,

yi =
1
lii

 

bi �
i�1

Â
j=1

li j y j

!

for i = 2, . . . ,n.
(6.2)

The forward substitutions algorithm solves the lower triangular system Lx= b in n2 operations, with

n the size of the matrix L; indeed, n divisions,
n

Â
i=2

(i�1) subtractions, and
n

Â
i=2

(i�1) multiplications

are performed by the algorithm yielding the operations count n+2
n

Â
i=2

(i�1) = n2.
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Remark 6.3 Since L is a lower triangular matrix, we have det(L) =
n

’
i=1

lii; hence, det(L) 6= 0 if

and only if lii 6= 0 for all i = 1, . . . ,n.

Upper triangular matrix: backward substitution algorithm

Definition 6.4 U 2Rn⇥n is a upper triangular matrix if and only its entries are such that (U)i j =
ui j 2 R for i = 1, . . . ,n, j = i, . . . ,n and otherwise (U)i j = 0 for i = 1, . . . ,n, j = 1, . . . , i�1; the
upper triangular matrix U reads:

U =

2

6

6

6

6

6

6

6

4

u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

. . . . . .
...

0 · · · 0 unn

3

7

7

7

7

7

7

7

5

. (6.3)

For U 2 Rn⇥n an upper triangular matrix, we consider the solution of the upper triangular system:

U x = y, i.e.

8

>

>

>

>

>

<

>

>

>

>

>

:

u11 x1 +u12 x2 +u13 x3 + · · ·+u1n xn = y1
u22 x2 +u23 x3 + · · ·+u2n xn = y2

u33 x3 + · · ·+u3n xn = y3
. . .

... =
...

unn xn = yn,

where, by referring to Eq. (6.1), we set A =U and b = y. The upper triangular system U x = y is
solved by means of the backward substitutions algorithm, which reads:

xn =
yn

unn
,

xi =
1
uii

 

yi �
n

Â
j=i+1

ui j x j

!

for i = n�1, . . . ,1.
(6.4)

The backward substitutions algorithm solves the upper triangular system U y = x in n2 operations
in analogy with the forward substitutions algorithm for lower triangular systems.

Remark 6.4 Since U is an upper triangular matrix, det(U) =
n

’
i=1

uii, for which det(U) 6= 0 if

and only if uii 6= 0 for all i = 1, . . . ,n.

6.2.2 LU factorization method
Definition 6.5 Let us consider the nonsingular matrix A 2 Rn⇥n. Then, if it exists, the LU
factorization (decomposition) of the matrix A consists in determining a lower triangular matrix
L 2 Rn⇥n and an upper triangular matrix U 2 Rn⇥n such that:

A = LU.

If the LU factorization of the matrix A exists (A = LU), then the linear system Ax = b can be
solved as the sequential solution of the following lower and upper triangular linear systems:

Ly = b and U x = y;
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indeed, since A = LU , we have LU x = b for which, by introducing the auxiliary vector y =U x 2
Rn, we obtain the previous result.

Definition 6.6 The LU factorization method for the solution of the linear system Ax = b consists
in:

1. determining the LU factorization of the matrix A (A = LU), if it exists;
2. solving the lower triangular system Ly = b with the forward substitutions algorithm (6.2);
3. solving the upper triangular system U x= y with the backward substitutions algorithm (6.4).

Since the LU factorization method is based on the LU factorization of A, the matrices L and U must
be determined, if these exist.

⌥ Example 6.3 We illustrate the LU factorization of a matrix A 2 Rn⇥n for n = 2, which reads:



a11 a12
a21 a22

�

=



l11 0
l21 l22

� 

u11 u12
0 u22

�

A = L U
or

8

>

>

<

>

>

:

l11 u11 = a11
l11 u12 = a12
l21 u11 = a21

l21 u12 + l22 u22 = a22.

We observe that the matrices L and U involve 6 unknown entries l11, l21, l22, u11, u12, and u22,
respectively. However, only 4 constraints can be imposed to determine them. ⌥

Remark 6.5 Following the previous example, for the LU factorization of a general matrix
A 2 Rn⇥n there are n2 + n unknown entries of the matrices L and U , but only n2 constraints

to enforce; indeed, ai j =
min{i, j}

Â
r=1

lir ur j for i, j = 1, . . . ,n. In order to overcome this issue, by

convention, the diagonal entries of the lower triangular L obtained by the LU factorization of the
matrix A 2 Rn⇥n are set equal to 1; i.e. lii = 1 for all i = 1, . . . ,n:

L =

2

6

6

6

6

6

6

6

4

1 0 · · · 0
l21 1 0 · · · 0
l31 l32 1 0 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · ln,n�1 1

3

7

7

7

7

7

7

7

5

. (6.5)

Gauss elimination method (GEM)

The Gauss elimination method (GEM) is used to determine the LU factorization of the matrix
A 2 Rn⇥n. In order to illustrate the GEM algorithm, we introduce some notation; specifically, we
define the matrix A(k) 2 Rn⇥n for some k = 1, . . . ,n as:

A(k) :=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

a(1)11 a(1)12 a(1)13 · · · a(1)1n
0 a(2)22 a(2)23 · · · a(2)2n

0 0
. . .

...
0 · · · 0 a(k)kk · · · a(k)kn
0 · · · 0 a(k)k+1,k · · · a(k)k+1,n
...

...
...

...
0 · · · 0 a(k)n,k · · · a(k)n,n

3

7

7

7

7

7

7

7

7

7

7

7

7

5

for k = 1, . . . ,n, (6.6)
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or equivalently:

⇣

A(k)
⌘

i j
=

8

>

>

>

<

>

>

>

:

a(i)i j for i = 1, . . . ,k�1, j = i, . . . ,n

a(k)i j for i, j = k, . . . ,n

0 otherwise.

for k = 1, . . . ,n. (6.7)

By convention we set A(1) ⌘ A, i.e. a(1)i j = ai j for all i, j = 1, . . . ,n.

Definition 6.7 Given the index k, with 1  k  n�1, by referring to the corresponding matrix
A(k) of Eq. (6.6), its entry a(k)kk is called pivot element.

The following GEM algorithm is used to determine the entries of the matrices L 2Rn⇥n of Eq. (6.5)
and U 2 Rn⇥n of Eq. (6.3) determining the LU factorization of A 2 Rn⇥n; the U matrix coincides
with A(n) obtained at the end of the GEM (U = A(n)).

Algorithm 6.1: Gauss elimination method (GEM)

set A(1)
= A;

for k = 1, . . . ,n�1 do

for i = k+1, . . . ,n do

lik =
a(k)ik

a(k)kk

;

for j = k+1, . . . ,n do

a(k+1)
i j = a(k)i j � lik a(k)k j ;

end

end

fill A(k+1) as in Eq. (6.7) ;
end

fill L as in Eq. (6.5) and set U = A(n);

The number of operations associated to the GEM for the LU factorization of A is O
✓

2
3

n3
◆

.

Remark 6.6 In order to perform the LU factorization of the matrix A according to the GEM,
all the pivot elements a(k)kk associated to the matrices A(k) must be non zero, i.e. a(k)kk 6= 0 for all
k = 1, . . . ,n�1.

⌥ Example 6.4 We provide the LU factorization of the matrix A =

2

4

3 1 �1
1 4 2
�1 �1 4

3

5 using the

GEM. We start by setting A(1)
= A and observing that n = 3; then, we obtain the LU factorization

following the GEM Algorithm 6.1.
• k = 1: a(1)11 = 3,

– i = k+1 = 2: l21 =
a(1)21

a(1)11

=
1
3

,
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⇤ j = k+1 = 2: a(2)22 = a(1)22 � l21 a(1)12 =
11
3

,

⇤ j = n = 3: a(2)23 = a(1)23 � l21 a(1)13 =
7
3

;

– i = n = 3: l31 =
a(1)31

a(1)11

=�1
3

,

⇤ j = k+1 = 2: a(2)32 = a(1)32 � l31 a(1)12 =�2
3

,

⇤ j = n = 3: a(2)33 = a(1)33 � l31 a(1)13 =
11
3

.

L =

2

6

6

6

6

6

4

1 0 0

1
3

1 0

�1
3

? 1

3

7

7

7

7

7

5

, A(2)
=

2

6

6

6

6

6

4

3 1 �1

0
11
3

7
3

0 �2
3

11
3

3

7

7

7

7

7

5

.

• k = 2: a(2)22 =
11
3

,

– i = k+1 = n = 3: l32 =
a(2)32

a(2)22

=� 2
11

,

⇤ j = k+1 = n = 3: a(3)33 = a(2)33 � l32 a(2)23 =
45
11

.

L =

2

6

6

6

6

6

4

1 0 0

1
3

1 0

�1
3

� 2
11

1

3

7

7

7

7

7

5

, U = A(3)
=

2

6

6

6

6

6

4

3 1 �1

0
11
3

7
3

0 0
45
11

3

7

7

7

7

7

5

.

⌥

Remark 6.7 If the matrix A admits the LU factorization then det(A)= det(LU)= det(L) det(U)=
det(U), since det(L) = 1. Therefore, the LU factorization can be used to compute the determinant

of the matrix A in a number of operations O
✓

2
3

n3
◆

.

Once the LU factorization of A is computed, the matrices L and U can be stored in an unique matrix,
eventually overwriting A.

Properties of the LU factorization and LU factorization method
The GEM provides the LU factorization of the matrix A 2 Rn⇥n required to solve the linear system
Ax = b by means of the LU factorization method of Definition 6.6. The number of operations

associated to the LU factorization method is O
✓

2
3

n3
◆

; indeed, O
✓

2
3

n3
◆

operations are required

by the GEM, while n2 for both the forward and backward substitutions method.

Remark 6.8 The LU factorization of the matrix A 2 Rn⇥n is independent of the vector b 2 Rn

associated to the linear system Ax = b. For this reason, the LU factorization method can be
efficiently used for solving the linear system with different vectors b since the matrices L and U
can be computed only once. Then, the computational costs for any new vector b are associated



6.2 Direct Methods 63

only to the solution of the lower Ly = b and upper triangular U x = y systems by means of the
forward and backward substitutions algorithms, respectively,

We determine the cases for which the the LU factorization of a nonsingular matrix A exists
and is unique. With this, aim, we recall the following definitions and provide some proposi-
tions.

Definition 6.8 The matrix A 2 Rn⇥n is:
• symmetric if and only if AT ⌘ A;
• definite positive if and only if z

T Az > 0 for all z 2 Rn with z 6= 0;

• diagonally dominant by row if and only if |aii|�
n

Â
j=1, j 6=i

�

�ai j
�

� for all i = 1, . . . ,n;

• strictly diagonally dominant by row if and only if |aii|>
n

Â
j=1, j 6=i

�

�ai j
�

� for all i = 1, . . . ,n;

• diagonally dominant by column if and only if |aii|�
n

Â
j=1, j 6=i

�

�a ji
�

� for all i = 1, . . . ,n;

• strictly diagonally dominant by column if and only if |aii|>
n

Â
j=1, j 6=i

�

�a ji
�

� for all i = 1, . . . ,n.

The principal submatrix of A 2 Rn⇥n of order i, with 1  i  n, is the matrix Ai 2 Ri⇥i such that
(Ai)lm = (A)lm for all l,m = 1, . . . , i.

Proposition 6.2 — Necessary and sufficient condition for LU factorization. Given a non-
singular matrix A 2 Rn⇥n, its LU factorization exists and is unique if and only if det(Ai) 6= 0
for all i = 1, . . . ,n�1 (i.e. all the principal submatrices of A of order i, with 1  i  n�1, are
nonsingular).

⌥ Example 6.5 The LU factorization of the nonsingular matrix A =

2

4

1 1 4
2 2 3
4 6 7

3

5 using the GEM

does not exist. Indeed, using Proposition 6.2, we have det(A1) = det([1]) 6= 0, but det(A2) =

det
✓

1 1
2 2

�◆

= 0; specifically, the pivot element a(2)22 = 0 in the GEM algorithm. ⌥

Proposition 6.3 — Sufficient conditions for LU factorization. Given the matrix A 2 Rn⇥n, if
one of the following conditions holds:

• A is symmetric and definite positive,
• A is strictly diagonally dominant by row,
• or A is strictly diagonally dominant by column,

then the LU factorization of A exists and is unique.

⌥ Example 6.6 The LU factorization of the matrix A =

2

4

4 �2 1
�2 �5 �1
1 3 9

3

5 exists and is unique

according to Proposition 6.3 since A is strictly diagonally dominant by row; indeed, |4|> |�2|+ |1|,
|�5|> |�2|+ |�1|, and |9|> |1|+ |3|. ⌥

⌥ Example 6.7 Let us consider the nonsingular matrix A =

2

4

1 �2 8
�2 5 �1
1 1 0

3

5. None of the
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sufficient conditions of Proposition 6.3 is satisfied for which one cannot infer the existence and
uniqueness of the LU factorization of A by using this result. In this case, the existence and
uniqueness of the LU factorization of A must be verified in terms of the necessary and sufficient
condition of Proposition 6.2. We deduce that it exists and is unique since det(A1) = det([1]) 6= 0

and det(A2) = det
✓

1 �2
�2 5

�◆

= 9 6= 0. ⌥

Pivoting technique
If the necessary and sufficient condition of Proposition 6.2 is not satisfied, the LU factorization
of the matrix A cannot be found by using the GEM Algorithm 6.1. Nevertheless, one should
still be able to solve the linear system Ax = b for any nonsingular matrix A by means of the LU
factorization method. With this aim, it is possible to adopt the so called pivoting technique in
combination with the GEM for the LU factorization of A.

Definition 6.9 The pivoting technique consists in applying suitable permutations of the rows
(or columns) of the nonsingular matrix A in the presence of null pivot elements a(k)kk , for some
k = 1, . . . ,n�1, encountered during the application of the GEM algorithm.

Remark 6.9 The application of the GEM with pivoting technique ensures the existence and
uniqueness of a LU factorization for any nonsingular matrix A 2 Rn⇥n.

We specifically consider the pivoting technique with permutation by rows of the matrix A. Such
permutation of the rows of the matrix A 2 Rn⇥n consists in pre- multiplying it for a permutation
matrix P2Rn⇥n as PA. The permutation matrix P is an orthogonal matrix, i.e. PT =P�1 (PT P= I);
if P = I, there are not permutations on the matrix A. In general, the permutation matrix P is obtained
simultaneously with the matrices L and U by applying the GEM with the pivoting technique to the
nonsingular matrix A.

⌥ Example 6.8 The nonsingular matrix A of Example 6.5 does not admit the LU factorization
with the standard GEM method (without pivoting technique) since the pivot element a(2)22 = 0. By

introducing the permutation by row matrix P =

2

4

1 0 0
0 0 1
0 1 0

3

5 and by applying it to A, we obtain the

matrix eA = PA =

2

4

1 1 4
4 6 7
2 2 3

3

5, for which the second and third rows are permuted. By applying

the GEM to eA, we obtain the LU factorization with L =

2

4

1 0 0
4 1 0
2 0 1

3

5 and U =

2

4

1 1 4
0 2 �9
0 0 �5

3

5,

where eA = PA = LU ; the pivot elements are ea(1)11 = 1 6= 0 and ea(2)22 = 2 6= 0. ⌥
In general, the pivoting technique is applied during the GEM even if the pivot elements are not

necessarily zero. Indeed, the pivoting technique can be used also to reduce the propagation of the
round–off errors involved the application of the GEM at the calculator. Specifically, at the general
iterate k = 1, . . . ,n�1 of the GEM, the row k is permuted with the l row, where l = arg max

j=k,...,n

�

�

�

a(k)jk

�

�

�

,

with ea(k)kk = a(k)ll the new pivot element.
If the pivoting technique is applied for the determination of the LU factorization of the nonsin-

gular matrix A through the permutation by row matrix P, the matrices L and U determine the LU
factorization of the permuted matrix PA as:

PA = LU.
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Then, the linear system Ax = b can be solved as the sequential solution of the following lower and
upper triangular linear systems:

Ly = Pb and U x = y;

indeed, we have PAx = Pb and LU x = Pb for which, by introducing the vector y = U x, we
obtain the previous result.

Definition 6.10 The LU factorization method with pivoting technique, based on the permutation
by row matrix P, for the solution of the linear system Ax = b consists in:

1. determining the LU factorization of the matrix PA (PA = LU);
2. solving the lower triangular system Ly=Pb with the forward substitutions algorithm (6.2);
3. solving the upper triangular system U x= y with the backward substitutions algorithm (6.4).

6.2.3 Cholesky factorization method
If the matrix A is symmetric and positive definite, the less computationally expensive Cholesky
factorization can be used in place of the LU factorization.

Definition 6.11 Let us consider the symmetric and positive definite matrix A 2 Rn⇥n. Then, its
Cholesky factorization consists in determining an upper triangular matrix R 2 Rn⇥n such that:

A = RT R.

The general form of the upper triangular matrix R 2 Rn⇥n is:

R =

2

6

6

6

6

6

4

r11 r12 r13 · · · r1n
0 r22 r23 · · · r2n
...

. . . . . . · · ·
...

0 · · · 0 rnn

3

7

7

7

7

7

5

,

which, for A 2 Rn⇥n symmetric and positive definite, is determined by means of the Cholesky
algorithm.

Algorithm 6.2: Cholesky algorithm
r11 =

p
a11;

for i = 2, . . . ,n do

for j = 1, . . . , i�1 do

r ji =
1

r j j

 

ai j �
j�1

Â
k=1

rki rk j

!

;

end

rii =

s

aii �
i�1

Â
k=1

r2
ki ;

end

The Cholesky algorithm requires O
✓

1
3

n3
◆

operations to determine the matrix R, a number about

the half of that of the LU factorization; in addition, the memory storage is also inferior.



66 Chapter 6. Linear Systems

If A is symmetric and positive definite, the Cholesky factorization exists (A = RT R) and the
linear system Ax = b can be solved as the sequential solution of the following lower and upper
triangular linear systems:

RT
y = b and Rx = y,

since RT is a lower triangular matrix; indeed, being A = RT R, we have RT Rx = b from which the
previous result follows by introducing the vector y = Rx 2 Rn.

Definition 6.12 The Cholesky factorization method for the solution of the linear system Ax = b,
with A symmetric and positive definite, consists in:

1. determining the Cholesky factorization of the matrix A (A = RT R);
2. solving the lower triangular system RT

y= b with the forward substitutions algorithm (6.2);
3. solving the upper triangular system Rx= y with the backward substitutions algorithm (6.4).

6.2.4 Thomas algorithm
Let us consider a nonsingular matrix A 2 Rn⇥n, with n � 2, which is tridiagonal, i.e. in the form:

A =

2

6

6

6

6

6

6

6

6

6

6

6

4

a1 c1 0 · · · 0
e2 a2 c2 0 · · · 0
0 e3 a3 c3 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 en�2 an�2 cn�2 0
0 · · · 0 en�1 an�1 cn�1
0 · · · 0 en an

3

7

7

7

7

7

7

7

7

7

7

7

5

,

with some real valued entries {ai}n
i=1, {ci}n�1

i=1 , and {ei}n
i=2. We assume that there exists an unique

LU factorization of the matrix A without pivoting; in the case of a tridiagonal matrix A, such LU
factorization leads to the following lower L and upper U bidiagonal matrices:

L=

2

6

6

6

6

6

6

6

6

6

4

1 0 · · · 0
b2 1 0 · · · 0
0 b3 1 0 · · · 0
...

. . . . . . . . .

0 · · · 0 bn�1 1 0
0 · · · 0 bn 1

3

7

7

7

7

7

7

7

7

7

5

and U =

2

6

6

6

6

6

6

6

6

6

4

a1 c1 0 · · · 0
0 a2 c2 0 · · · 0
0 0 a3 c3 0 · · · 0
...

. . . . . . . . .

0 · · · 0 an�1 cn�1
0 · · · 0 an

3

7

7

7

7

7

7

7

7

7

5

,

with some real valued entries {ai}n
i=1 and {bi}n

i=2 determined as:

a1 = a1,

bi =
ei

ai�1
and ai = ai �bi ci�1 for i = 2, . . . ,n.

(6.8)

By considering the linear system Ax = b, with A 2 Rn⇥n the above mentioned tridiagonal matrix,
we solve it by means of the LU factorization method. The LU factorization of A is performed using
Eq. (6.8); then, the linear system Ly = b is solved by means of the following forward substitutions
algorithm adapted to the lower bidiagonal matrix L:

y1 = b1,

yi = bi �bi yi�1 for i = 2, . . . ,n.
(6.9)
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Finally, the linear system U x = y is solved by means of the following backward substitutions
algorithm adapted to the upper bidiagonal matrix U :

x1 =
yn

an
,

xi =
yi � ci xi+1

ai
for i = n�1, . . . ,1.

(6.10)

Definition 6.13 The Thomas algorithm for the solution of the linear system Ax = b, with A
a nonsingular tridiagonal matrix which admits an unique LU factorization without pivoting,
consists in:

1. determining the LU factorization of the matrix A (A= LU) using the algorithm of Eq. (6.8);
2. solving the lower bidiagonal system Ly = b with the algorithm of Eq. (6.9);
3. solving the upper bidiagonal system U x = y with the algorithm of Eq. (6.10).

The Thomas algorithm only requires O(8n) operations (precisely 8n�7) to solve the linear system
associated to the tridiagonal matrix A 2 Rn⇥n. We remark that the full LU factorization of A would

have required O
✓

2
3

n3
◆

operations.

6.2.5 Accuracy of the numerical solution computed with direct methods
We assess the accuracy of the solution of the linear system Ax = b by means of direct methods;
indeed, when using the calculator, the numerical solution can be affected by the propagation of
round–off errors.

Preliminaries and definitions
We recall and provide some definitions in the context of linear algebra.

Definition 6.14 For the vector v 2 Rn, its p–norm is defined as:

kvkp :=

 

Â
i=1

|vi|p
!1/p

for 1  p +•.

Remark 6.10 For the vector v 2 Rn, we have kvk2 =
p

v ·v =
r

Â
i=1

|vi|2, kvk1 =
n

Â
i=1

|vi|, and

kvk• = max
i=1,...,n

|vi|. Typically, the norm 2 of the vector v is simply indicated as kvk ⌘ kvk2.

Definition 6.15 Given the matrix A 2 Cn⇥n, its eigenvalues {li(A)}n
i=1 2 C and the corre-

sponding eigenvectors {vi}n
i=1 2 Cn are such that Avi = li vi for all i = 1, . . . ,n. The eigenval-

ues {li(A)}n
i=1 correspond to the zeros of the characteristic polynomial of the matrix A, say

pA(l ) := det(A�l I).

Definition 6.16 The spectral radius of the matrix A 2 Cn⇥n, with eigenvalues {li(A)}n
i=1 2 C,

is defined as:

r(A) := max
i=1,...,n

|li(A)| .
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Remark 6.11 For a matrix A 2 Cn⇥n, we observe that:

• det(A) =
n

’
i=1

li(A);

• li
�

A�1�= 1/ln+1�i(A) for i = 1, . . . ,n, if the inverse A�1 of A exists;
• r(A)� 0.

We focus now on a real valued matrix A 2 Rn⇥n.

Proposition 6.4 If the matrix A 2Rn⇥n is symmetric, then its eigenvalues are real, i.e. li(A)2R
for all i = 1, . . . ,n. It follows that, if A 2 Rn⇥n is symmetric, then it is also positive definite if
and only if all its eigenvalues are strictly positive, i.e. li(A)> 0 for all i = 1, . . . ,n.

Definition 6.17 For the matrix A 2 Rn⇥n, its p–norm is defined as:

kAkp := sup
v2Rn,
v6=0

kAvkp

kvkp
for some 1  p +•.

Remark 6.12 For A 2 Rn⇥n, we have:

• kAk1 = max
j=1,...,n

 

n

Â
i=1

|ai j|
!

and kAk• = max
i=1,...,n

 

n

Â
j=1

|ai j|
!

;

• kAk2 = sup
v2Rn, v6=0

kAvk
kvk =

q

lmax(AT A), with lmax(AT A) the maximum eigenvalue of AT A;

• if A is symmetric and positive definite, then kAk2 = lmax(A) since lmax(AT A)= (lmax(A))2.

Definition 6.18 The conditioning number in p–norm of a nonsingular matrix A 2 Rn⇥n is:

Kp(A) := kAkp kA�1kp for some 1  p +•.

By convention, if A is singular, Kp(A) = +•.

Definition 6.19 The spectral conditioning number of a nonsingular matrix A 2 Rn⇥n is:

K(A) := r (A) r

�

A�1�=
max

i=1,...,n
|li(A)|

min
i=1,...,n

|li(A)|
,

where r(A) and r

�

A�1� are the spectral radii of the matrices A and A�1, respectively.

Remark 6.13 For the nonsingular matrix A 2 Rn⇥n we have:
• Kp(A)� 1 for all 1  p +•;

• K2(A) = kAk2 kA�1k2 =

s

lmax(AT A)
lmin(AT A)

;

• if the eigenvalues of A are real and strictly positive, K(A) =
lmax(A)
lmin(A)

, with lmax(A) and

lmin(A) the maximum and minimum eigenvalues of A, respectively;
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• if A is symmetric and positive definite, then K2(A)⌘ K(A) =
lmax(A)
lmin(A)

.

Remark 6.14 The conditioning number of a matrix A provides a measure of the sensitivity of
the solution of the linear system Ax = b to perturbations on the data, i.e. b and A itself. The
system is said well–conditioned if Kp(A) is relatively “small” and ill–conditioned if Kp(A) is
“very large” (e.g. O

�

109� or larger ...).

Accuracy of the numerical approximation
Solving numerically the linear system Ax= b is equivalent to solve in exact arithmetic the following
perturbed linear system:

(A+dA) bx = b+�b, (6.11)

where bx 2 Rn is the numerical solution, dA 2 Rn⇥n the perturbation matrix of A, and �b 2 Rn the
perturbation vector of b. In order to assess the accuracy of the numerical solution bx, we provide the
following definitions and error estimates.

Definition 6.20 For the linear system Ax = b we define:

• the (absolute) error e := x�bx, with e 2 Rn;

• the relative error erel :=
kx�bxk
kxk , for x 6= 0, with erel 2 R;

• the residual r := b�Ax, with r 2 Rn;

• the relative residual rrel :=
krk
kbk , for b 6= 0, with rrel 2 R.

Remark 6.15 If dA = 0 in the perturbed linear system (6.11), then we have Abx = b+ �b; it
follows that �b =�r.

Remark 6.16 In general, the residual r and the relative residual rrel are used as estimators (or
indicators) of the error associated to the numerical solution bx; indeed, the exact solution x of the
linear system Ax = b is generally unknown.

Proposition 6.5 For the perturbed linear system (6.11), if K2(A)
kdAk2

kAk2
< 1, then the relative

error associated to the numerical solution bx is bounded as:

erel 
K2(A)

1�K2(A)
kdAk2

kAk2

✓

kdAk2

kAk2
+

k�bk
kbk

◆

.

It follows that, if
kdAk2

kAk2
= 0 or nearly zero (e.g. for perturbations dA ' 0), the relative error is

bounded as:

erel  K2(A)rrel = K2(A)
krk
kbk . (6.12)
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Corollary 6.6 If A and dA are symmetric and positive definite matrices and
lmax(dA)
lmin(A)

< 1, then

the relative error erel is bounded as:

erel 
K(A)

1� lmax(dA)
lmin(A)

✓

lmax(dA)
lmax(A)

+
k�bk
kbk

◆

.

If
lmax(dA)
lmin(A)

= 0 or nearly zero (e.g. for perturbations dA ' 0), the relative error is bounded as:

erel  K(A)rrel = K(A)
krk
kbk . (6.13)

Remark 6.17 The error estimators of Eqs. (6.12) and (6.13) can be fully computed once the
numerical solution bx is available.

Remark 6.18 Based on the results (6.12) and (6.13), the relative residual rrel represents a
satisfactory criterion to assess the error associated to the numerical solution bx of the linear
system with a direct method only if the conditioning number is “small”, i.e. when the matrix A is
well–conditioned. Conversely, if the conditioning number of the matrix A is “large”, i.e. if A is
ill–conditioned, then the error associated to bx may be very “large”, even if rrel is “small” due to
the propagation of round–off errors during the application of the direct method at the calculator.

6.3 Iterative Methods
We consider now iterative methods for the solution of the linear system Ax = b. The goal consists
in solving Ax = b in principle in an infinite number of steps as x = lim

k!+•
x

(k), where the iterates
n

x

(k)
o+•

k=0
represent a sequence of solution vectors, with x

(0) the initial guess (initial solution).

6.3.1 The general scheme
A general iterative method for the solution of Ax = b, with A 2Rn⇥n nonsingular and x, b 2Rn is:

given x

(0) 2 Rn,

x

(k+1) = Bx

(k) +g for k = 0,1, . . . ,
(6.14)

where B 2 Rn⇥n is the iteration matrix and g 2 Rn is the iteration vector; B and g depend on the
matrix A, the vector b, and the specific iterative method at hand. However, the iterative method
must satisfy the strong consistency condition for which, if x is the solution of Ax = b, one needs
x = Bx+g; therefore, the iteration vector g = (I �B) A�1

b since x = A�1
b.

Definition 6.21 We define the error e

(k) 2 Rn associated to the iterate x

(k) 2 Rn of iterative
method (6.14) as:

e

(k) := x�x

(k) for k = 0,1, . . . ,
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while the residual r

(k) 2 Rn as:

r

(k) := b�Ax

(k) for k = 0,1, . . . .

From the definition of the error and the strong consistency condition we have e

(k+1) = x�x

(k+1) =

(Bx+g)�
⇣

Bx

(k) +g

⌘

= B
⇣

x�x

(k)
⌘

= Be

(k) for k = 0,1, . . .; then, by recursion, it follows that:

e

(k) = Bk
e

(0) for k = 0,1, . . . ,

from which we have the error estimate:
�

�

�

e

(k)
�

�

�


�

�Bk�
�

2

�

�

�

e

(0)
�

�

�

for k = 0,1, . . . . (6.15)

Proposition 6.7 If the iteration matrix B 2Rn⇥n of the iterative method (6.14) is symmetric and
definite positive, we have:

�

�

�

e

(k)
�

�

�

 (r(B))k
�

�

�

e

(0)
�

�

�

for k = 0,1, . . . ,

with r(B) the spectral radius of B.

In general, lim
k!+•

e

(k) = 0 if and only if lim
k!+•

Bk = 0, which occurs for r(B)< 1.

Proposition 6.8 — Necessary and sufficient condition for convergence. The iterative
method (6.14) is convergent to the exact solution x 2 Rn of the linear system Ax = b for all the
initial guesses x

(0) 2 Rn if and only if the spectral radius of the iteration matrix B is strictly less
than one, i.e. r(B)< 1. Moreover, the smaller is r(B), the faster is the convergence.

6.3.2 Splitting methods
Splitting methods represent a family of iterative methods for which the iteration matrix B is deduced
following splitting operations on the matrix A. With this aim, a nonsingular matrix P 2Rn⇥n, called
preconditioning matrix (or preconditioner), is introduced. By observing that A = P�P+A and
Ax = b, we have Px = (P�A) x+b, from which x = P�1 (P�A) x+P�1

b; from the latter, in
virtue of the strong consistency condition, we have the iteration matrix and vector:

B = I �P�1 A (6.16)

and g = P�1
b, respectively. Then, the iterative method (6.14) can be written as Px

(k+1) =

(P�A) x

(k) +b, from which P
⇣

x

(k+1)�x

(k)
⌘

= r

(k).

Definition 6.22 The preconditioned residual z

(k) 2 Rn is the solution of the linear system:

Pz

(k) = r

(k) for k = 0,1, . . . ,

with P 2 Rn⇥n the nonsingular preconditioning matrix.

It follows that the iterative method (6.14) can be written as:

given x

(0) 2 Rn,

solve Pz

(k) = r

(k) and set x

(k+1) = x

(k) + z

(k) for k = 0,1, . . . .
(6.17)
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We observe that r

(k+1) = b�Ax

(k+1) = b�Ax

(k)�Az

(k) = r

(k)�Az

(k). Then, from Eq. (6.17) we
provide the following preconditioned iterative method.

Algorithm 6.3: Preconditioned iterative method

given x

(0) 2 Rn, set r

(0) = b�Ax

(0);
for k = 0,1, . . ., until a stopping criterion is satisfied do

solve the linear system Pz

(k) = r

(k);
set x

(k+1) = x

(k) + z

(k);
set r

(k+1) = r

(k)�Az

(k);
end

The iterative method should be stopped by a suitable stopping criterion. In particular, we can
consider criterion based on the residual and the relative residual for which the iterations are stopped

at the first k � 0 for which
�

�

�

r

(k)
�

�

�

< tol or

�

�

r

(k)
�

�

�

�

r

(0)
�

�

< tol, for some tolerance tol; in addition, the

number of iterations should be limited by some integer kmax “sufficiently” large”.

Remark 6.19 At each step of the iterative method (6.17) one needs to solve a linear system
Pz

(k) = r

(k). Therefore, the choice of the preconditioning matrix P should ensure that Pz

(k) = r

(k)

can be solved in a computationally efficient manner with a direct method (in “few” operations),
i.e. it should represent a “simple” linear system. On the other side, the choice of P should lead to
a convergent iterative method, i.e. for which the associated iteration matrix B = I �P�1 A has
spectral radius strictly less than one (r(B)< 1); in addition, one would like to have r(B)⌧ 1 to
ensure fast convergence to the exact solution x.

Let us set P = I for which the linear system is the “simplest” to solve since z

(k) = r

(k); in this
case, B = I �A and, since P has not any knowledge of A, one has very often r(B) > 1 or, if the
method converges, this typically occurs in several iterations. Conversely, for P = A, the linear
system Az

(k) = r

(k) is as complex to be solved as the original one Ax = b, but B = 0 and r(B) = 0
for which the convergence occurs in one iteration for all x

(0) 2 Rn. In this context, the choice of
the preconditioning matrix P is a tradeoff between the “simplicity” of solving the linear system
Pz

(k) = r

(k) at each iteration and the need of ensure the (rapid) convergence of the iterative method
(i.e. r(B)< 1 and eventually r(B)⌧ 1).

6.3.3 Jacobi and Gauss–Seidel methods
We consider the Jacobi and Gauss–Seidel iterative methods for the solution of Ax = b; these
methods lay in the category of splitting methods; see Eq. (6.17).

Jacobi method
The Jacobi method can be used for a nonsingular matrix A 2 Rn⇥n with nonzero diagonal entries,
i.e. for aii 6= 0 for all i = 1, . . . ,n. The Jacobi method consists in setting the preconditioning matrix
P in the general scheme (6.17) as the diagonal matrix extracted from A. Specifically, by indicating
with PJ the preconditioning matrix P for the Jacobi method, we have:

PJ = D,

where D 2 Rn⇥n is the diagonal matrix extracted from A, i.e. D has nonzero entries (D)ii = aii for
all i = 1, . . . ,n. We observe that det(PJ) 6= 0 according to the hypothesis that the diagonal entries
of A are nonzero. The linear system PJ z

(k) = r

(k) of Eq. (6.17) is “simple” to be solved by a direct
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method since PJ = D is a diagonal matrix. The iteration matrix associated to the Jacobi method,
say BJ , reads:

BJ = I �P�1
J A = I �D�1A,

from which the convergence of the Jacobi method to x for all the initial guesses x

(0) depends on its
spectral radius r(BJ) according to Proposition 6.8.

In matrix form, the kth iterate of the Jacobi method can be written as:

Dx

(k+1) = b� (A�D) x

(k) for k = 0,1, . . . ,

given some x

(0) 2 Rn. This leads to the Jacobi algorithm:

given x

(0) 2 Rn,

x(k+1)
i =

1
aii

 

bi �
n

Â
j=1, j 6=i

ai j x(k)j

!

i = 1, . . . ,n, for k = 0,1, . . . .

The Jacobi algorithm is also referred as simultaneous update.

Gauss–Seidel method
The Gauss–Seidel method can be used for a nonsingular matrix A 2 Rn⇥n with nonzero diagonal
entries, i.e. for aii 6= 0 for all i = 1, . . . ,n. The method considers as preconditioning matrix P in
Eq. (6.17) the lower triangular matrix extracted from A. By convention, we indicate with D the
diagonal matrix extracted from A and with E 2 Rn⇥n a lower triangular matrix (excluding the main
diagonal) with nonzero entries (E)i j =�ai j for i = 2, . . . ,n and j = 1, . . . , i�1; finally, F 2 Rn⇥n

is an upper triangular matrix (excluding the main diagonal) with nonzero entries (F)i j =�ai j for
i = 1, . . . ,n�1 and j = i+1, . . . ,n. In this manner, we have A = D�E �F . By indicating with
PGS the preconditioning matrix P for the Gauss–Seidel method, we have:

PGS = D�E,

where det(PJ) 6= 0 according to the hypothesis that the diagonal entries of A are nonzero. The linear
system PGS z

(k) = r

(k) of Eq. (6.17) is “simple” to be solved by a direct method since PGS = D�E
is a lower triangular matrix. Then, the iteration matrix associated to the Gauss–Seidel method, say
BGS, reads:

BGS = I �P�1
GS A = I � (D�E)�1 A;

the convergence properties of the Gauss–Seidel method depend on its spectral radius r(BGS)
according to Proposition 6.8.

In matrix form, the kth iterate of the Gauss–Seidel method reads:

(D�E) x

(k+1) = b� (A�E �D) x

(k) for k = 0,1, . . . ,

given some x

(0) 2 Rn, from which we deduce the Gauss–Seidel algorithm:

given x

(0) 2 Rn,

x(k+1)
i =

1
aii

 

bi �
i�1

Â
j=1

ai j x(k+1)
j �

n

Â
j=i+1

ai j x(k)j

!

i = 1, . . . ,n, for k = 0,1, . . . .

The Gauss–Seidel algorithm is also referred as sequential update.
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Sufficient conditions for the convergence of the Jacobi and Gauss–Seidel methods
The necessary and sufficient condition for the convergence of the Jacobi and Gauss–Seidel methods
(for all x

(0) 2Rn) is that the spectral radius of the corresponding iteration matrices is strictly less than
one; see Proposition 6.8. However, in some instances, it is possible to establish the convergence of
the methods simply by inspecting the matrix A of the linear system Ax= b instead of assembling the
iteration matrix B and computing r(B). We state the following sufficient conditions.

Proposition 6.9 If A is nonsingular and strictly diagonally dominant by row, then the Jacobi
and Gauss–Seidel methods converge to x for all the initial guesses x

(0) 2 Rn.

Proposition 6.10 If A is symmetric and positive definite, then the Gauss–Seidel method con-
verges to x for all the initial guesses x

(0) 2 Rn.

Proposition 6.11 If A is nonsingular and tridiagonal with all the diagonal entries nonzero,
then the Jacobi and Gauss–Seidel methods are either both divergent or convergent to x. In the
latter case, the Gauss–Seidel method converges faster than the Jacobi method since r (BGS) =
(r (BJ))

2.

The previous conditions are only sufficient; that is, if these are not satisfied, the necessary and
sufficient condition of Proposition 6.8 must be verified to determine the convergence of the iterative
method.

⌥ Example 6.9 We consider the matrix A =



3 1
1 2

�

, which is nonsingular and strictly diagonally

dominant by row. Since the sufficient conditions of Proposition 6.9 are satisfied, then both the
Jacobi and Gauss–Seidel methods are convergent for any x

(0) 2 R2 to the solution x 2 R2 of a
linear system Ax = b, for some b 2 R2. We notice that also the hypotheses of Propositions 6.10
and 6.11 are satisfied. We verify the results by means of the necessary and sufficient condition of
Proposition 6.8; i.e. we verify that the spectral radii of the iterations matrices of the Jacobi and

Gauss–Seidel methods are strictly less than one. For the Jacobi method, we have PJ =



3 0
0 2

�

and BJ = I�P�1
J A=

2

6

4

0 �1
3

�1
2

0

3

7

5

, from which r (BJ) =
1p
6
< 1. For the Gauss–Seidel method,

we have PGS =



3 0
1 2

�

and BGS = I �P�1
GS A =

2

6

4

0 �1
3

0 �1
6

3

7

5

, from which r (BGS) =
1
6
< 1. ⌥

⌥ Example 6.10 Let us consider the nonsingular matrix A =

2

4

1 0 �1
3 2 0
�1 �1 2

3

5. In this case,

the hypotheses of Propositions 6.9, 6.10, and 6.11 are not satisfied, for which it is necessary to
verify the necessary and sufficient condition of Proposition 6.8 to determine the convergence
of the Jacobi and Gauss–Seidel methods for all the initial guesses. For the Jacobi method, we

have PJ =

2

4

1 0 0
0 2 0
0 0 2

3

5 and BJ = I �P�1
J A =

2

6

6

6

4

0 0 1

�3
2

0 0
1
2

1
2

0

3

7

7

7

5

, from which r (BJ) =
109
100

> 1;

we deduce that the Jacobi method does not converge for all x

(0) 2 R3 to the solution x 2 R3 of
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the linear system Ax = b, for some b 2 R3. Conversely, for the Gauss–Seidel method, we have

PGS =

2

4

1 0 0
3 2 0
�1 �1 2

3

5 and BGS = I �P�1
GS A =

2

6

6

6

4

0 0 1

0 0 �3
2

0 0 �1
4

3

7

7

7

5

, from which r (BGS) =
1
4
< 1;

hence, the Gauss–Seidel method converges to x for all x

(0) 2 R3. ⌥

6.3.4 Preconditioned Richardson methods
Let us introduce a sequence of real valued parameters {ak}+•

k=0 2 R, then the preconditioned
Richardson method represents a generalization of the iterative method (6.17), reading:

given x

(0) 2 Rn,

solve Pz

(k) = r

(k) and set x

(k+1) = x

(k) +ak z

(k) for k = 0,1, . . . ,
(6.18)

for a nonsingular preconditioning matrix P 2 Rn⇥n. If ak = a 2 R for all k = 0,1, . . ., the iterative
method 6.18 is called stationary preconditioned Richardson method, while if ak is not constant
with the iteration number k = 0,1, . . ., it is called dynamic preconditioned Richardson method.
We observe that for ak = a = 1, we obtain the method of Eq. (6.17). Moreover, r

(k+1) = b�
Ax

(k+1) = b�Ax

(k)�ak Az

(k) = r

(k)�ak Az

(k). Then, from Eq. (6.17) we provide the following
preconditioned Richardson method.

Algorithm 6.4: Dynamic preconditioned Richardson method

given x

(0) 2 Rn, set r

(0) = b�Ax

(0);
for k = 0,1, . . ., until a stopping criterion is satisfied do

solve the linear system Pz

(k) = r

(k);
choose ak;
set x

(k+1) = x

(k) +ak z

(k);
set r

(k+1) = r

(k)�ak Az

(k);
end

Remark 6.20 For a dynamic preconditioned Richardson method, we have x

(k+1) = Bk x

(k) +gk
for k = 0,1, . . ., where the dynamic iteration matrix

Bk = I �ak P�1 A for k = 0,1, . . .

and the iteration vector gk = ak P�1 A vary with the iteration number. Therefore, the convergence
properties of the dynamics Richardson method changes with the iteration number k, since the
parameter ak also changes with k.

Remark 6.21 For a stationary preconditioned Richardson method, the iteration matrix reads:

B
a

= I �a P�1 A;

the convergence properties of the method depend on the spectral radius of B
a

, i.e. r(a) = r (B
a

).

We consider now conditions for the convergence of the stationary preconditioned Richardson
methods to the solution x 2 Rn of a general linear system Ax = b for all the initial guesses
x

(0) 2 Rn.
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Proposition 6.12 If the matrices A and P 2 Rn⇥n are nonsingular, then the stationary precondi-
tioned Richardson method converges to x 2 Rn for all x

(0) 2 Rn if and only if

a

�

�

li
�

P�1 A
�

�

�

2
< 2Re

�

li
�

P�1 A
� 

for all i = 1, . . . ,n,

with a 6= 0, being
�

li
�

P�1 A
� n

i=1 the eigenvalues of P�1 A.

Corollary 6.13 If the matrices A and P 2 Rn⇥n are nonsingular with all the eigenvalues
�

li
�

P�1 A
� n

i=1 real (i.e. li
�

P�1 A
�

⌘ Re
�

li
�

P�1 A
� 

for all i = 1, . . . ,n), then the stationary
preconditioned Richardson method converges to x 2 Rn for all x

(0) 2 Rn if and only if

0 < a li
�

P�1 A
�

< 2 for all i = 1, . . . ,n.

Definition 6.23 The energy norm of a vector v 2 Rn with respect to a symmetric and positive
definite matrix A 2 Rn⇥n is defined as:

kvkA =
p

v

T Av.

Corollary 6.14 If the matrices A and P 2 Rn⇥n are symmetric and positive definite, then the
stationary preconditioned Richardson method converges to x 2Rn for all x

(0) 2Rn if and only if

0 < a <
2

lmax (P�1 A)
,

with lmax
�

P�1 A
�

the maximum of the eigenvalues of P�1 A. Moreover, the spectral radius of
the iteration matrix B

a

is minimum for a = aopt , where

aopt :=
2

lmin (P�1 A)+lmax (P�1 A)
,

being lmin
�

P�1 A
�

the minimum of the eigenvalues of P�1 A; in this case (for a = aopt), we
have:

�

�

�

e

(k)
�

�

�

A
 dk

�

�

�

e

(0)
�

�

�

A
for k = 0,1, . . . , (6.19)

with d :=
K
�

P�1 A
�

�1
K (P�1 A)+1

, being K
�

P�1 A
�

=
lmax

�

P�1 A
�

lmin (P�1 A)
the spectral conditioning number of

P�1 A.

Remark 6.22 Under the hypotheses of the Corollary 6.14, a choice for the optimal parameter
for a stationary Richardson method is provided. However, the result (6.19) also indicates that the
“closer” is the preconditioning matrix P to the matrix A, the closer is the spectral conditioning
number of the matrix P�1 A to one and the faster is the convergence of the method; however, in
this case, the linear system Pz

(k) = r

(k) can be relatively complex to be solved. Specifically, for
P = A, one has aopt = 1 and d = 0, for which convergence occurs in one iteration. Conversely, if
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P = I, one has aopt =
2

lmin (A)+lmax (A)
and d =

K (A)�1
K (A)+1

; in this case, the convergence of

the iterative method can be slow if K(A)� 1, since d . 1. In general, the closer is K
�

P�1 A
�

to
one, the faster is the convergence of the method.

⌥ Example 6.11 Let us consider A =



4 1
1 2

�

and the preconditioning matrix P =



4 0
0 4

�

,

which are both symmetric and definite positive. Therefore, to study the convergence prop-
erties of the stationary Richardson method, we can use the results of Corollary 6.14. Such

convergence properties depend on the matrix P�1 A =

2

6

4

1
1
4

1
4

1
2

3

7

5

and its eigenvalues lmin =

lmin
�

P�1 A
�

=
3
4
�

p
2

4
and lmax = lmax

�

P�1 A
�

=
3
4
+

p
2

4
. In particular, the stationary Richard-

son method is convergent to the solution x 2 R2 of a linear system associated to A for all

x

(0) 2 R2 if and only if 0 < a <
2

lmax
=

8
3+

p
2

. Moreover, the optimal parameter aopt =

2
lmin +lmax

=
4
3

yields the minimum spectral radius among the iteration matrices B
a

; specifi-

cally, B
aopt = I�aopt P�1 A =

2

6

4

�1
3

�1
3

�1
3

1
3

3

7

5

and r

�

B
aopt

�

=

p
2

3
< 1. From Eq. (6.19), we have

d =
K
�

P�1 A
�

�1
K (P�1 A)+1

=
lmax �lmin

lmax +lmin
= r

�

B
aopt

�

=

p
2

3
; i.e. the error in energy norm A is abated by

a factor less than or equal to
p

2
3

at each iteration. ⌥

In general, for a stationary preconditioned Richardson method, determining the parameter a , and
eventually aopt , can be computationally expensive since it is related to the eigenvalues of P�1 A.
In order to overcome such computations to determine the parameter a , dynamic preconditioned
Richardson method can be conveniently used.

6.3.5 Gradient methods
The preconditioned gradient method is a dynamic preconditioned Richardson method (6.18) for
which the parameters ak are specifically chosen as:

ak =

�

z

(k)�T
r

(k)

�

z

(k)
�T Az

(k)
for k = 0,1, . . . ,

with P a nonsingular preconditioning matrix and z

(k) the preconditioned residual. Similarly, the
gradient method is a dynamic Richardson method without preconditioning and with the parameters
ak chosen as:

ak =

�

r

(k)�T
r

(k)

�

r

(k)
�T Ar

(k)
for k = 0,1, . . . .

The gradient method is obtained from the preconditioned gradient method for P = I; indeed, in this
case, z

(k) ⌘ r

(k) for all k = 0,1, . . .. For the gradient method, the residual vector r

(k) represents the
descent direction for the error at the iterate k = 0,1, . . . and, if A is a symmetric and positive definite
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matrix, the choice of ak =

�

r

(k)�T
r

(k)

�

r

(k)
�T Ar

(k)
is the one which minimizes the error

�

�

�

e

(k+1)
�

�

�

A
along this

direction r

(k). We report the gradient and preconditioned gradient algorithms in the following.

Algorithm 6.5: Gradient method

given x

(0) 2 Rn, set r

(0) = b�Ax

(0);
for k = 0,1, . . ., until a stopping criterion is satisfied do

set ak =

�

r

(k)�T
r

(k)

�

r

(k)
�T Ar

(k)
;

set x

(k+1) = x

(k) +ak r

(k);
set r

(k+1) = r

(k)�ak Ar

(k);
end

Algorithm 6.6: Preconditioned gradient method

given x

(0) 2 Rn, set r

(0) = b�Ax

(0);
for k = 0,1, . . ., until a stopping criterion is satisfied do

solve Pz

(k) = r

(k);

set ak =

�

z

(k)�T
r

(k)

�

z

(k)
�T Az

(k)
;

set x

(k+1) = x

(k) +ak z

(k);
set r

(k+1) = r

(k)�ak Az

(k);
end

Proposition 6.15 If the matrices A and P 2 Rn⇥n are symmetric and positive definite, then the
preconditioned gradient method converges to the solution x 2 Rn for all the choices of x

(0) 2 Rn

and
�

�

�

e

(k)
�

�

�

A
 dk

�

�

�

e

(0)
�

�

�

A
for k = 0,1, . . . , (6.20)

where d :=
K
�

P�1 A
�

�1
K (P�1 A)+1

; K
�

P�1 A
�

=
lmax

�

P�1 A
�

lmin (P�1 A)
is the spectral conditioning number of

P�1 A.

The previous result can be used for the gradient method (without preconditioning), simply by
setting P = I. Moreover, the error estimate (6.20) can be used to predict a priori the number of
iterations necessary for the preconditioned gradient method to converge to the solution up to a
prescribed tolerance.

6.3.6 Conjugate gradient methods
Let us consider a symmetric and positive definite matrix A 2 Rn⇥n, then the conjugate gradient
method minimizes, at each iterate k = 0,1 . . ., the error

�

�

�

e

(k+1)
�

�

�

A
along a descent direction p

(k) 2Rn

which is A–conjugate with all the previously computed descent directions p

( j) for j = 0, . . . ,k�1
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(i.e.
⇣

p

( j)
⌘T

Ap

(k) = 0 for all j = 0, . . . ,k�1, if k � 1). The conjugate gradient method does not
fit in the family of dynamic Richardson methods; indeed, at each iteration two parameters ak and
bk need to be determined, the latter to compute the conjugate direction p

(k).

Algorithm 6.7: Conjugate gradient method

given x

(0) 2 Rn, set r

(0) = b�Ax

(0) and p

(0) = r

(0);
for k = 0,1, . . ., until a stopping criterion is satisfied do

set ak =

�

p

(k)�T
r

(k)

�

p

(k)
�T Ap

(k)
;

set x

(k+1) = x

(k) +ak p

(k);
set r

(k+1) = r

(k)�ak Ap

(k);

set bk =

�

p

(k)�T
Ar

(k+1)

�

p

(k)
�T Ap

(k)
;

set p

(k+1) = r

(k)�bkp

(k);
end

Proposition 6.16 If A 2 Rn⇥n is symmetric and definite positive, the conjugate gradient method
converges to x 2 Rn for all x

(0) 2 Rn in at most n iterations (in exact arithmetic) and

�

�

�

e

(k)
�

�

�

A
 2ck

1+ c2k

�

�

�

e

(0)
�

�

�

A
for k = 0,1, . . . , (6.21)

where c :=
p

K (A)�1
p

K (A)+1
, with K (A) the spectral conditioning number of A.

Remark 6.23 The conjugate gradient method can be interpreted as a direct method since con-
vergence to x 2 Rn occurs in at most n iterations in exact arithmetic. However, the algorithm is
typically stopped before the n iterations are reached.

Remark 6.24 For k sufficiently large, the term
2ck

1+ c2k in the error estimate (6.21) behaves

as 2ck. Therefore, for a symmetric and positive definite matrix A, the conjugate gradient
method converges faster than the gradient method since 2ck < dk when the iteration number k is
“sufficiently” large; see Eqs. (6.20) and (6.21).

For P 2 Rn⇥n a nonsingular preconditioning matrix, one can define preconditioned conjugate
gradient method by generalizing the conjugate gradient method. Even if we do not provide its
algorithm, we highlight the following result.

Proposition 6.17 If A and P 2 Rn⇥n are symmetric and definite positive matrices, the pre-
conditioned conjugate gradient method converges to x 2 Rn for all x

(0) 2 Rn and the error
�

�

�

e

(k)
�

�

�

A
behaves as in Eq. (6.21), but with c =

p

K (P�1 A)�1
p

K (P�1 A)+1
, being K

�

P�1 A
�

the spectral

conditioning number of P�1 A.
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6.3.7 Stopping criterion for iterative methods
As anticipated, iterative methods should be stopped by suitable stopping criterion; in addition, the
number of iterations of the algorithm should be limited by some integer kmax “sufficiently" large.
The stopping criterion consists in terminating the algorithm at the iterate k for which a suitable
error estimator of the true error, say ee(k), is smaller than a prescribed tolerance tol, i.e. ee(k) < tol.
The following error estimators, and associated stopping criterion, can be considered:

• the (absolute) residual, for which ee(k) =
�

�

�

r

(k)
�

�

�

;

• the relative residual, for which ee(k)rel = r(k)rel :=

�

�

r

(k)
�

�

kbk is used to estimate the relative error

e(k)rel :=

�

�

x�x

(k)
�

�

kxk , for x 6= 0;

• the difference of successive iterates, for which ee(k) =
�

�

�

�(k)
�

�

�

, where �(k) := x

(k+1)�x

(k) for
k � 0.

Let us start by assessing the quality of the stopping criterion based on the residual (absolute
and relative). With this aim, we recall the result of Proposition 6.5 and specifically Eq. (6.5), for
which, by setting bx = x

(k) and r = r

(k) for a general (preconditioned) iterative method, we have:

e(k)rel  K2(A)r(k)rel ;

similarly, for the absolute error:
�

�

�

e

(k)
�

�

�

 K2(A)
kxk
kbk

�

�

�

r

(k)
�

�

�

.

We deduce that the stopping criterion based on the (absolute and relative) residual is satisfactory
if the conditioning number K2(A) of the matrix A of the linear system to be solved is relatively
“small”, i.e. if A is well–conditioned. Conversely, if the matrix A is ill–conditioned, the stopping
criterion based on the residual is unsatisfactory since the true error is underestimated by the error
estimator (the residual).

We consider now the stopping criterion based on the difference of successive iterates for
the general iterative method (6.17) (or the stationary preconditioned Richardson method). For
simplicity, we assume that the iteration matrix B is symmetric and positive definite, for which we
can write:

�

�

�

e

(k)
�

�

�

 1
1�r(B)

�

�

�

�(k)
�

�

�

for k = 0,1, . . . ;

indeed, using Proposition 6.7, we have
�

�

�

e

(k)
�

�

�

=
�

�

�

x�x

(k+1) +x

(k+1)�x

(k)
�

�

�

=
�

�

�

e

(k+1) +�(k)
�

�

�


�

�

�

e

(k+1)
�

�

�

+
�

�

�

�(k)
�

�

�

 r(B)
�

�

�

e

(k)
�

�

�

+
�

�

�

�(k)
�

�

�

, from which the above result follows. We deduce that
the stopping criterion based on the difference of successive iterates is satisfactory if the spectral
radius of the iteration matrix B is much smaller than one, i.e. r(B)⌧ 1. Conversely, the criterion
is unsatisfactory if r(B). 1, since the true error is underestimated by the error indicator

�

�

�

�(k)
�

�

�

.
The previous considerations hold also for iteration matrices B which are not symmetric nor definite
positive.
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6.4 A Brief Comparison of Direct and Iterative Methods
We present a brief overview of direct and iterative methods for the solution of the linear systems
Ax = b, with A 2 Rn⇥n a nonsingular matrix.

The golden standard to solve Ax = b with a direct method is represented by the LU factorization
method; the Cholesky factorization method is used for a symmetric and positive definite matrix A.
The Thomas algorithm is conveniently adopted for a tridiagonal matrix A; for matrices in diagonal
form (e.g. pentadiagonal) and banded, analogous algorithms can be used.

Remark 6.25 The MATLAB command \ solves a linear system by means of a direct method,
which is suitably and automatically chosen based on on the properties of the matrix A; specifically,
one obtains the numerical solution of the linear system with the MATLAB command:
» x = A \ b;

Regarding the iterative methods, preconditioned Richardson methods, both stationary and
dynamic, constitute a family of methods with a single parameter and a preconditioning matrix P.
The preconditioned gradient and conjugate gradient methods represent state of the art iterative
methods for the solution of linear systems when the matrix A and the preconditioning matrix
P are symmetric and positive definite. We observe that if A is non singular, solving Ax = b is
equivalent to solve AT Ax = AT

b, for which the above methods can be conveniently used; however,
the computational cost and memory storage for generating the matrix AT A and vector AT

b should
be carefully taken into account for sizes n large. In this respect, for a general matrix A, the GMRES
(Generalized Minimum RESidual) method is very often used for practical problems.

Direct methods can be used to generate preconditioners P for iterative methods. For example,
incomplete LU factorizations (ILU) can be applied to the matrix A to generate a couple of lower
and upper triangular preconditioning matrices eL and eU , respectively. Similarly, for A symmetric
and positive definite, incomplete Cholesky factorizations (IC) can be applied to generate suitable
preconditioners.

As a general guideline, the choice to use a direct or an iterative method for the solution of
the linear system Ax = b depends on the properties of the matrix A itself and the computational
resources available (CPU and memory). For example, if the size n of the matrix A is very large,
iterative methods are preferred if A is a full matrix, while direct methods can be conveniently
chosen if A is sparse and banded.
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7. Approximation of Eigenvalues

We consider the numerical approximation of eigenvalues and eigenvectors of a matrix A 2 Cn⇥n.

7.1 Definitions and Examples

We recall the following definitions since we are considering complex numbers; we indicate with i

the imaginary unit such that i

2 =�1.

Definition 7.1 Let us consider the vector v 2 Cn, with components v j = a j + i b j, being a j
and b j 2 R for all j = 1, . . . ,n. The vector v indicates the complex conjugate of v, which has
components v j = a j � i b j for all j = 1, . . . ,n. The vector v

H := (v)T is the transpose complex
conjugate vector of v.

Definition 7.2 The matrix A 2 Cn⇥n is Hermitian if AH ⌘ A (i.e.
�

A
�T ⌘ A).

Then, by recalling Definition 6.15, we provide the following ones.

Definition 7.3 Given a matrix A 2 Cn⇥n, the eigenvalue problem reads: find l 2 C and x 2 Cn

such that Ax = l x, where l is an eigenvalue and x an eigenvector. The characteristic polynomial
of the matrix A is pA(l ) = det(A�l I); the n eigenvalues {li(A)}n

i=1 of A are the zeros of pA(l ).

The following definition provides a generalization of the eigenvalue concept.

Definition 7.4 Given a matrix A 2 Cn⇥n and a nonsingular matrix B 2 Cn⇥n, the generalized
eigenvalue problem reads: find l 2 C and x 2 Cn such that Ax = l Bx, where l is a generalized
eigenvalue and x the corresponding eigenvector. The characteristic polynomial of the matrix A
with respect to B is pA,B(l ) = det(A�l B); the n eigenvalues {li(A;B)}n

i=1 of A with respect to
B are the zeros of pA,B(l ).
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We recall that for a matrix A 2 Cn⇥n of size n there exist n eigenvalues and n corresponding
eigenvectors.

Definition 7.5 Let us consider a matrix A 2 Cn⇥n with eigenvalues {li}n
i=1 2 C and the corre-

sponding eigenvectors {xi}n
i=1 2 Cn; then, the Rayleigh quotient is defined as:

li =
x

H
i Axi

x

H
i xi

, (7.1)

for xi 6= 0.

The definition of Rayleigh quotient (7.1) can be used to determine the eigenvalues of a matrix
A once the eigenvectors are known. Conversely, if the eigenvalue li is known, the correspond-
ing eigenvector xi can be determined by solving (A�li I) xi = 0; we notice that typically the
eigenvectors are normalized, i.e. kxik= 1 for i = 1, . . . ,n.

⌥ Example 7.1 Let us consider the matrix A =



3 �1
0 1

�

. The characteristic polynomial is

pA(l ) = (3� l )(1� l ) = l

2 � 4l + 3. The eigenvalues of A are l1 = 3 and l2 = 1, which
correspond to the zeros of pA(l ) (i.e. pA(li)= 0 for i= 1 and 2). Now, we compute the eigenvectors

x1 and x2. For l1 = 3, we set (A�l1 I)x1 = 0, yielding


0 �1
0 �2

�

x1 = 0 and x1 =



1
0

�

. For

l2 = 1, we set (A�l2 I)x2 = 0, i.e.


2 �1
0 0

�

x2 = 0, thus obtaining x2 =
1p
5



1
2

�

. ⌥

⌥ Example 7.2 We assess the connectivity of some cities in Switzerland through the rail network.

With this aim, we assemble a matrix
A 2 Rn⇥n, with n the number of cities
connected by the rail network, which
represent a connectivity matrix. The
entries of A are zero, except those en-
tries (A)i j = 1 for some i, j = 1, . . . ,n
such that the cities i and j are directly
connected; (A)ii = 0 for all i = 1, . . . ,n.
We consider a matrix A associated to a
scheme of the Swiss rail network.

The largest eigenvalue l1 of the matrix A is indicative of the overall connectivity of the network. The
components of the associated eigenvector x1 quantify the relative connectivity of the corresponding
cities to the rest of the network. For the rail network reported above, we have:

x1 ' (0.16, 0.28, 0.39, 0.39, 0.17, 0.29, 0.43, 0.31, 0.078, 0.36, 0.13, 0.15, 0.13)T ,

from which we deduce that Bellinzona (x1,9) is the least connected city in the network, while Olten
(x1,7) the most connected one. ⌥
⌥ Example 7.3 We consider the dynamics of two concentrated masses connected by elastic
springs. Specifically, let us consider two particles P1 and P2 with masses m1 and m2, respectively,
and connected through elastic springs with elastic coefficients k1 and k2; the particle P1 is anchored
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as highlighted in the following figure. The displacement of the particles are x1(t) and x2(t), with t
the time variable.

The internal forces read F1 = k1 x1 and
F2 = k1 (x2 � x1), while the inertial
forces are �m1 ẍ1 and �m2 ẍ2 for the
two particles, respectively.

The equilibrium of the forces, i.e. �m1 ẍ1 = F1 �F2 and �m2 ẍ2 = F2, leads to the following linear
system at each time t:

B ẍ(t)+Ax(t) = 0,

where x(t) = (x1(t),x2(t))T , B =



m1 0
0 m2

�

, and A =



k1 + k2 �k2
�k2 k2

�

. By assuming that

xi(t) = ai sin(w t +f), for some w , f , and ai for i = 1,2, the above system can be rewritten as:
�

�w

2 B+A
�

a = 0,

where a = (a1,a2)
T . The latter represents a generalized eigenvalue problem for which {wi}2

i=1 are
the natural frequencies and {ai}2

i=1 the corresponding eigenmodes. ⌥

7.2 Power Method
Let us assume that for a matrix A 2 Cn⇥n its eigenvalues {li}n

i=1 are ordered as:

|l1|> |l2|� |l3|� · · ·� |ln| ,

with the two largest eigenvalues distinct, i.e. l1 6= l2. Moreover, we assume that the eigenvectors
of A are linearly independent, i.e. det([x1, . . . ,xn]) 6= 0. Under these hypotheses, the power method
approximates the largest eigenvalue l1 of the matrix A by means of the following algorithm.

Algorithm 7.1: Power method

set x

(0) 2 Cn, with
�

�

�

x

(0)
�

�

�

6= 0;

y

(0) =
x

(0)
�

�

x

(0)
�

�

;

for k = 1,2, . . ., until a stopping criterion is satisfied do

x

(k) = Ay

(k�1);

y

(k) =
x

(k)
�

�

x

(k)
�

�

;

l

(k) =
⇣

y

(k)
⌘H

Ay

(k);

end

In the algorithm of the power method, l

(k) represents an approximation of the largest eigenvalue
l1 of A through the Rayleigh quotient (7.1), while y

(k) is an approximation of the corresponding
eigenvector x1. As stopping criterion for the power method reported in Algorithm 7.1, the following
one is used:

�

�

l

(k)�l

(k�1)
�

�

�

�

l

(k)
�

�

< tol for k = 1,2, . . . , (7.2)
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where tol is a prescribed tolerance.

At the general iterate k � 2 of the Algorithm 7.1, we have that y

(k) =
x

(k)
�

�

x

(k)
�

�

=
1

�

�

x

(k)
�

�

Ay

(k�1) =

1
�

�

x

(k)
�

�

�

�

x

(k�1)
�

�

A2
y

(k�2); it follows that:

y

(k) =
1

’k
j=1
�

�

x

( j)
�

�

Ak
y

(0) for k = 1,2, . . . ,

from which the denomination of the power method. For the set of linearly independent eigen-

vectors {xi}n
i=1 2 Cn of A, we can write any vector v 2 Cn as v =

n

Â
i=1

ai xi, for some coef-

ficients {ai}n
i=1 2 C. Therefore, we have x

(0) =
n

Â
i=1

ai xi and y

(0) =
1

�

�

x

(0)
�

�

n

Â
i=1

ai xi. Hence,

x

(1) = Ay

(0) =
1

�

�

x

(0)
�

�

n

Â
i=1

ai Axi =
1

�

�

x

(0)
�

�

n

Â
i=1

ai li xi and y

(1) =
1

�

�

x

(1)
�

�

x

(1) = b

(1)
n

Â
i=1

ai li xi, with

b

(1) :=
1

�

�

x

(1)
�

�

�

�

x

(0)
�

�

. By continuing in the same manner for k = 2,3, . . ., we obtain:

y

(k) = b

(k)
n

Â
i=1

ai l

k
i xi = b

(k)
l

k
1

"

a1 x1 +
n

Â
i=2

ai

✓

li

l1

◆k

xi

#

for k = 0,1, . . . .

where b

(k) :=
1

’k
i=1
�

�

x

(i)
�

�

. From the previous result, we observe that, if a1 6= 0, then lim
k!+•

y

(k) = x1

since lim
k!+•

✓

li

l1

◆k

= 0, being |l1|> |li| for all i = 2, . . . ,n, and lim
k!+•

�

�

�

b

(k)
l

k
1 a1

�

�

�

= 1.

For a general matrix A 2 Cn⇥n, the absolute error on the eigenvalue l1 for an approximation
l

(k) obtained by the power method (when applicable) reads:

e(k) =
�

�

�

l1 �l

(k)
�

�

�

'
�

�

�

�

l2

l1

�

�

�

�

k

for k “sufficiently” large.

If the matrix A 2 Cn⇥n is Hermitian (i.e. if AH ⌘ A), then we have:

e(k) =
�

�

�

l1 �l

(k)
�

�

�

'
�

�

�

�

l2

l1

�

�

�

�

2k

for k “sufficiently” large.

The power method allows the approximation of the largest eigenvalue l1 of A, under the
hypotheses for which the method is applicable. If A is nonsingular, then li

�

A�1�= 1/ln+1�i(A)
for i = 1, . . . ,n. Therefore, the power method can be used to approximate the largest eigenvalue of

A�1; then, the smallest eigenvalue of A is obtained as ln(A) =
1

l1(A�1)
. However, this approach is

in general computationally expensive if A is “large” since its inverse A�1 needs to be first computed.

7.3 Inverse Power Method
Let us assume that for a nonsingular matrix A 2 Cn⇥n its eigenvalues {li}n

i=1 are ordered as:

|l1|� · · ·� |ln�1|> |ln| ,

with the two smallest eigenvalues distinct, i.e. ln 6= ln�1. In addition, we assume that the eigenvec-
tors of A are linearly independent, i.e. det([x1, . . . ,xn]) 6= 0. Under these hypotheses, the inverse
power method approximates the smalles eigenvalue ln of A by means of the following algorithm.
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Algorithm 7.2: Inverse power method

set x

(0) 2 Cn, with
�

�

�

x

(0)
�

�

�

6= 0;

y

(0) =
x

(0)
�

�

x

(0)
�

�

;

for k = 1,2, . . ., until a stopping criterion is satisfied do

solve Ax

(k) = y

(k�1);

y

(k) =
x

(k)
�

�

x

(k)
�

�

;

µ

(k) =
⇣

y

(k)
⌘H

A�1
y

(k);

end

In the algorithm of the inverse power method, µ

(k) represents an approximation of
1
ln

, with ln the

smallest eigenvalue of A, i.e. lim
k!+•

µ

(k) =
1
ln

. As stopping criterion, the one already presented for

the power method can be considered by replacing l

(k) and l

(k�1) with µ

(k) and µ

(k�1) in Eq. (7.2),
respectively.

Remark 7.1 Since the inverse power method involves the solution of the linear system Ax

(k) =
y

(k�1) at each iteration of the Algorithm 7.2, it is convenient to use the LU factorization method;
indeed, the LU factorization of the matrix A can be performed only once (at the first iteration).

7.4 Power and Inverse Power Methods with Shift
Definition 7.6 Let us consider a matrix A 2Cn⇥n, then the shift is a complex number s 2C such
that a matrix As 2 Cn⇥n is obtained as As = A� s I.

Remark 7.2 Let {li(A)}n
i=1 be the eigenvalues of the matrix A 2 Cn⇥n, then the eigenvalues of

the matrix As 2 Cn⇥n, with s 2 C the shift, are l j(As) = li(A)� s for some i, j = 1, . . . ,n.

The shift can be used to compute the smallest eigenvalue of the matrix A, say ln(A). Specifically,
by suitably selecting the shift value sn 2 C such that l1(As) = ln(A)� sn, the power method can
be used to approximate l1(As) and then ln(A) is determined as ln(A) = ln(As)+ s. In general, by
suitably selecting the shift value si such that ln(As) = li(A)� si, one can use the inverse power
method the approximate the eigenvalues li(A) for i = 2, . . . ,n. We remark that the so called
Gershgorin circles approximately locate the eigenvalues {li}n

i=1 of the matrix A in the space C, e.g.
with the goal of suitably choose the corresponding shift values.

⌥ Example 7.4 Let us consider a matrix A 2 R3⇥3 such that its eigenvalues are l1(A) = 5.3,
l2(A) = 2.1, and l3(A) = 0.2. As for example, we set the shift value s = 4.9 for which the matrix
As = A� s I possesses eigenvalues l1(As) =�4.7, l2(As) =�2.8, and l3(As) = 0.4. By using the
power method for the matrix As, then the eigenvalue l1(As) =�4.7 is approximated. Finally, the
smallest eigenvalue of A, l3(A) is obtained as l3(A) = l1(As)+ s = 0.2. ⌥
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8. Ordinary Differential Equations

We consider the numerical approximation of Ordinary Differential Equations (ODEs) and systems
of ODEs.

8.1 Introduction and Examples
We aim at numerically approximating differential equations in the form:

F
✓

y(t),
dy
dt

(t),
d2y
dt2 (t), . . . ,

dpy
dt p (t)

◆

= 0,

with t an independent variable, often associated with the time variable, y(t) the solution of the
differential problem, and p the order of the differential equation. We mainly focus on first order
problems for which p = 1, i.e.:

F
✓

y(t),
dy
dt

(t)
◆

= 0;

we remark that ODEs of order p > 1 can be recast in systems of ODEs of order p = 1.

8.1.1 The Cauchy problem
Definition 8.1 Let us consider the interval I = (t0, t f )⇢ R, then the Cauchy problem reads:

find y : I ⇢ R! R :

( dy
dt

(t) = f (t,y(t)) for all t 2 I,
y(t0) = y0,

(8.1)

where f (t,y) : I ⇥R! R is a given function with two arguments and y0 is the initial datum.

⌥ Example 8.1 Model problem. The model problem is a Cauchy problem (8.1) for which
f (t,y) = l y for some l 2 R and l < 0. Such problem admits the solution:

y(t) = y0 el (t�t0) for all t 2 [t0, t f ]; (8.2)

89
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often the model problem is defined in the interval I = (t0,+•).

Solution of the model problem for y0 = 1,
t0 = 0, t f = 5, and different values of l ; l =
�0.5 (blue), �1.0 (red), and �2.0 (black).

⌥

⌥ Example 8.2 Biology models often involve ODEs. A simple model to describe the evolution of
the concentration of a bacteria in a solution, say y(t), corresponds to the Cauchy problem (8.1) with

f (t,y) = a y
✓

1� 1
b

◆

, where a and b > 0, the latter representing the maximum concentration of

the bacteria.

Solution of the problem for y0 = 0.15,
b = 0.9, t0 = 0, t f = 10, and different val-
ues of a; a = 0.5 (blue), 1.0 (red), and
2.0 (black).

⌥

8.1.2 Well–posedness of the Cauchy problem

Proposition 8.1 If the function f (t,y) : I ⇥R! R is:
1. continuous in both the arguments and
2. Lipschitz continuous with respect to the second argument y for all t 2 I, i.e. there exists a

constant L > 0 such that | f (t,y1)� f (t,y2)| L |y1 � y2| for all t 2 I and for all y1,y2 2R,
then, there exists an unique solution y(t) : I ! R of the Cauchy problem (8.1) and y 2C1(I).

Remark 8.1 If the function f (t,y) : I⇥R!R is C1–continuous in the second argument y, then
it is also Lipschitz continuous in the second argument. Indeed, we have | f (t,y1)� f (t,y2)| 
✓

max
y2R,t2I

�

�

�

�

∂ f
∂y

(t,y)
�

�

�

�

◆

|y1 � y2|, for which one can take L = max
y2R,t2I

�

�

�

�

∂ f
∂y

(t,y)
�

�

�

�

.

We observe that Proposition 8.1 allows to determine the existence and uniqueness of the solution
y(t), but not to determine it in closed form.
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8.2 Numerical Approximation of Ordinary Differential Equations

We consider the partition of I = [t0, t f ] into Nh subintervals of equal size h =
t f � t0

Nh
for which

tn = t0 +nh for n = 0,1, . . . ,Nh (tNh ⌘ t f ).

Remark 8.2 We indicate with yn = y(tn) the evaluation of the (exact) solution y(t) at t = tn.
Conversely, we indicate with un the approximation of y(tn), i.e. the numerical solution at t = tn.

8.2.1 Forward Euler method

The forward Euler method for the Cauchy problem (8.1) approximates
dy
dt

(tn) with forward finite

differences for which
un+1 �un

h
= f (tn,un) for n = 0,1, . . . ,Nh �1; the method reads:

⇢

un+1 = un +h f (tn,un) for n = 0,1, . . . ,Nh �1,
u0 = y0.

(8.3)

Remark 8.3 The forward Euler method is an explicit method.

⌥ Example 8.3 For the model problem of Example 8.1, the forward Euler method reads:
⇢

un+1 = (1+hl )un for n = 0,1, . . . ,Nh �1,
u0 = y0.

⌥
⌥ Example 8.4 For the Cauchy problem (8.1) with f (t,y) = e�t (1� ya), for some a > 0, the
forward Euler method reads:

⇢

un+1 = un +he�tn (1�ua

n ) for n = 0,1, . . . ,Nh �1,
u0 = y0.

⌥

8.2.2 Backward Euler method

The backward Euler method for the Cauchy problem (8.1) approximates
dy
dt

(tn+1) with backward

finite differences for which
un+1 �un

h
= f (tn+1,un+1) for n = 0,1, . . . ,Nh �1; the method reads:

⇢

un+1 = un +h f (tn+1,un+1) for n = 0,1, . . . ,Nh �1,
u0 = y0.

(8.4)

Remark 8.4 The backward Euler method is an implicit method.

⌥ Example 8.5 For the model problem of Example 8.1, the backward Euler method reads:
(

un+1 =
un

1�hl

for n = 0,1, . . . ,Nh �1,

u0 = y0.

⌥
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Since the backward Euler method is an implicit method, one needs, in principle, to solve a nonlinear
equation for each n = 0,1, . . . ,Nh �1, i.e.:

find un+1 : FBE
n (un+1) = 0 for all n = 0,1, . . . ,Nh �1, (8.5)

with u0 = y0, where FBE
n (y) := y�un �h f (tn+1,y). Since Eq. (8.5) can not always be solved in

closed form, an approximate solution can be determined e.g. by means of the Newton, fixed point
iterations, or other methods for nonlinear equations. For example, by considering the Newton
method (2.3) to solve Eq. (8.5), one should evaluate the first derivative of the nonlinear function

FBE
n (y) in its argument u, which reads

�

FBE
n
�0
(y) = 1�h

∂ f
∂y

(tn+1,y); then, the following algorithm

can be used to solve an ODE with the backward Euler method in combination with the Newton
method.

Algorithm 8.1: Backward Euler with Newton method
set u0 = y0;
for n = 0,1, . . . ,Nh �1 do

set u(0)n+1 = un;

set FBE
n (y) = y�un �h f (tn+1,y) and

�

FBE
n
�0
(y) = 1�h

∂ f
∂y

(tn+1,y);

for k = 0,1, . . . until a stopping criterion is satisfied do

u(k+1)
n+1 = u(k)n+1 �

FBE
n

⇣

u(k)n+1

⌘

(FBE
n )0

⇣

u(k)n+1

⌘ ;

end

set un+1 = u(k+1)
n+1 ;

end

⌥ Example 8.6 For the Cauchy problem (8.1) with f (t,y) = e�t (1� ya), for some a > 0, we
have from Eq. (8.5): FBE

n (y) = y�un �he�tn+1 (1� ya) and
�

FBE
n
�0
(y) = 1+a he�tn+1 ya�1. ⌥

8.2.3 Crank–Nicolson method
The Crank–Nicolson method for the approximation of the Cauchy problem (8.1) considers the fol-

lowing approximation
un+1 �un

h
=

1
2
[ f (tn,un)+ f (tn+1,un+1)] for n = 0,1, . . . ,Nh�1; the method

reads:
(

un+1 = un +
h
2
[ f (tn,un)+ f (tn+1,un+1)] for n = 0,1, . . . ,Nh �1,

u0 = y0.
(8.6)

Remark 8.5 The Crank–Nicolson method is an implicit method.

Since the method is implicit, in principle, one needs to solve the following nonlinear equation for
each n = 0,1, . . . ,Nh �1:

find un+1 : FCN
n (un+1) = 0 for all n = 0,1, . . . ,Nh �1,
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with u0 = y0, where FCN
n (y) := y�un �

h
2
[ f (tn,un)+ f (tn+1,y)]. If the Newton method were to

be used to solve such nonlinear problem, then one would need the first derivative of FCN
n (y), which

reads
�

FCN
n
�0
(y) = 1� h

2
∂ f
∂y

(tn+1,y).

8.2.4 Heun method
The Heun method for the approximation of the Cauchy problem (8.1) reads:

8

>

<

>

:

u⇤n+1 = un +h f (tn,un)

un+1 = un +
h
2
⇥

f (tn,un)+ f (tn+1,u⇤n+1)
⇤

for n = 0,1, . . . ,Nh �1,
u0 = y0.

(8.7)

The Heun method can be interpreted as a modified Crank–Nicolson method with the implicit
term f (tn+1,un+1) replaced by f (tn+1,u⇤n+1), being u⇤n+1 the solution extrapolated by means of the
forward Euler method.

Remark 8.6 The Heun method is an explicit method.

8.2.5 Error analysis of the methods
By indicating with en = yn �un the error at tn, for some n = 0,1, . . . ,Nh, associated to a numerical
method, we observe from the following Figure that this depends on two contributions.

In particular, we have en = yn �un = (yn �u⇤n)+
(u⇤n �un). The component of the error (yn �u⇤n)
is (yn �u⇤n) = htn(h), with tn(h) called the lo-
cal truncation error, and it is associated to the
consistency of the method. The solution u⇤n indi-
cates an extrapolated solution; for example, by
considering the forward Euler method, one has
u⇤n = un�1 +h f (tn�1,yn�1).

Definition 8.2 The error associated to the numerical approximation of the Cauchy problem (8.1)
at tn is en := |yn �un| for some n = 0,1, . . . ,Nh. If one has:

en  een :=C hp,

with een the error estimator such that C is a positive constant independent of h, then the method
has convergence order p > 0 (order of accuracy of the method).

Remark 8.7 If the solution of the Cauchy problem (8.1) is y 2 C2(I), then the forward and
backward Euler methods converge with order p = 1 in h.

Remark 8.8 If the solution of the Cauchy problem (8.1) is y 2C3(I), then the Crank–Nicolson
and Heun methods converge with order p = 2 in h.

In order to numerically determine the convergence order p of an approximation method for ODEs,
one can solve the Cauchy problem (8.1) for different values of h = h1,h2, . . . and, by knowing the



94 Chapter 8. Ordinary Differential Equations

exact solution y(t), compute the errors at n = n1,n2, . . . corresponding to the same t 2 (t0, t f ]; in

particular, ni =
t � t0

hi
for some i = 1,2, . . ., if ni 2N. Then, one can estimate the convergence order

as p ' logh1/h2

en1

en2

, for h1 and h2 “sufficiently” small.

8.2.6 Stability of the numerical methods: zero– and absolute stability
Regarding numerical methods for the approximation of ODEs, two concepts of stability should be
considered, depending on the size of the interval I.

Zero–stability
Roughly speaking, the zero–stability is a property of a method in controlling the propagation of
numerical perturbations for bounded intervals I such that |I|<+• or relatively small. In general,
if h is “sufficiently” small the zero–stability of a method is guaranteed.

Definition 8.3 A numerical method for the approximation of ODEs is zero–stable if there exist
h0 > 0, C > 0 and, e0 > 0 such that, for all h 2 (0,h0] and for all e 2 (0,e0], if |rn|  e for all
n = 0,1, . . . ,Nh, then |zn � un|  C e for all n = 0,1, . . . ,Nh; rn is the size of the perturbation
introduced at the step tn, zn is the solution than would be obtained by applying the numerical
method to a perturbed ODE, C is a constant independent of h, but dependent on |I|, while e the
maximum size of the perturbation.

Based on the Lax–Richtmeyer equivalence Theorem 1.1, a consistent method for the approximation
of ODEs is convergent if and only if zero–stable.

Absolute stability (stability on unbounded intervals)
The absolute stability refers to unbounded intervals for which t f = +• or intervals for which
|I|<+•, but very “large”. In such instances, even if h is fixed, then lim

t f !+•
Nh =+•; moreover,

one can not choose h as small as desired to ensure stability. Nevertheless, one may still be interested
in controlling the propagation of numerical perturbations for t f tending to +•.

⌥ Example 8.7 Model problem in unbounded intervals. Following Example 8.1, we consider
the model problem on unbounded intervals, i.e. for which t f =+•. In this case, from Eq. (8.2), it
is straightforward to deduce that lim

t!+•
y(t) = 0. ⌥

Definition 8.4 The absolute stability is the property of a numerical method which yields
lim

n!+•
un = 0 for the model problem of Example 8.1 on unbounded intervals. The absolute

stability is unconditional if lim
n!+•

un = 0 for all h > 0, while conditional if lim
n!+•

un = 0 for all
h > 0 such that h < hmax, for some hmax > 0.

⌥ Example 8.8 Examples of absolutely stable and unstable numerical solutions.

Absolutely stable
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Unstable

⌥

Definition 8.5 The stability function associated to a numerical method for the solution of the
model problem of Example 8.1 is the complex function R(z) : C! C such that:

un = [R(hl )]n y0 for n = 0,1, . . . (8.8)

The stability function RFE(z) : C! C for the forward Euler method is:

RFE(z) = 1+ z;

indeed, from Eq. (8.3) applied to the model problem of Example 8.1, we have un+1 = (1+hl )un
for n = 0,1, . . ., from which the result follows for z = hl . The stability function RBE(z) : C! C
for the backward Euler method reads:

RBE(z) =
1

1� z
,

since, from Eq. (8.4) applied to the model problem, we have un+1 =
un

1�hl

for n = 0,1, . . .. The

stability function RCN(z) : C! C for the Crank–Nicolson method is:

RCN(z) =
1+ z/2
1� z/2

;

indeed, from Eq. (8.6) applied to the model problem, we have un+1 =
1+(hl )/2
1� (hl )/2

un for n= 0,1, . . ..

Finally, the stability function RH(z) : C! C for the Heun method reads:

RH(z) = 1+ z+
z2

2
,

since for Eq. (8.7) applied to the model problem we have un+1 =



1+hl +
(hl )2

2

�

un for n =

0,1, . . ..
From Eq. (8.8) it is straightforward to deduce that a method is absolutely stable if and only if

|R(z)|< 1. More specifically, the method is unconditionally absolutely stable if:

|R(hl )|< 1 for all h > 0;

instead, the method is conditionally absolutely stable if:

|R(hl )|< 1 for 0 < h < hmax.
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Remark 8.9 The forward Euler method is conditionally absolutely stable, specifically for

0 < h < hmax, with hmax =
2
|l | , as deduced by setting

�

�RFE(hl )
�

�< 1.

Remark 8.10 The backward Euler method is unconditionally absolutely stable, as deduced by
setting

�

�RBE(hl )
�

�< 1.

Remark 8.11 The Crank–Nicolson method is unconditionally absolutely stable, as deduced by
setting

�

�RCN(hl )
�

�< 1.

Remark 8.12 The Heun method is conditionally absolutely stable, specifically for 0 < h < hmax,

with hmax =
2
|l | , as deduced by setting

�

�RH(hl )
�

�< 1.

Definition 8.6 The region of absolute stability of a numerical method applied to the model
problem of Example 8.1 is the set in the complex plane A := {z 2 C : |R(z)|< 1}, where
R(z) : C! C is the stability polynomial.

We highlight in the following Figure the regions A of absolute stability of some numerical methods.

Definition 8.7 A numerical method is A –stable if it is unconditionally absolutely stable for the
model problem for all l 2 C such that Re{l}< 0.
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Remark 8.13 The backward Euler and Crank–Nicolson methods are A –stable.

Remark 8.14 For a general Cauchy problem (8.1) for which f is continuously differentiable

in the second argument and such that
∂ f
∂ t

(t,y(t))< 0 for all t 2 I, the forward Euler and Heun
methods are conditionally absolutely stable (i.e. lim

n!+•
un = 0) for:

0 < h < hmax =
2

maxt2I

�

�

�

∂ f
∂ t (t,y(t))

�

�

�

.

8.2.7 Runge–Kutta methods
Runge–Kutta methods indicate a family of one step methods for the numerical approximation of
ODEs for which the approximate solution un+1 is determined by evaluating f (t,y) at s � 1 stages
in the interval [tn, tn+1]. The general Runge–Kutta method for the approximation of the Cauchy
problem (8.1) reads:

8

<

:

un+1 = un +h
s

Â
i=1

bi Ki for n = 0,1, . . . ,Nh �1,

u0 = y0,

where Ki := f

 

tn + ci h, un +h
s

Â
j=1

ai j Kj

!

for i = 1, . . . ,s,

(8.9)

for some coefficients c = (c1, . . . ,cs)
T 2Rs, b = (b1, . . . ,bs)

T 2Rs, and A 2Rs⇥s, with (A)i j = ai j
for i, j = 1, . . . ,s. These coefficients, which determine the Runge–Kutta method at hand, are stored
in the so–called Butcher’s array as:

c A
b

T

We observe that if the matrix A is stored from the bottom–left “corner”, the Runge–Kutta method is
explicit if ai j = 0 for j � i for all i = 1, . . . ,s; otherwise, the Runge–Kutta method is implicit.

⌥ Example 8.9 We consider some examples of explicit Runge–Kutta methods with s = 1, 2, and 4
stages.

• s = 1, RK1. In this case, Eq. (8.9) reads:
⇢

un+1 = un +hb1 K1 for n = 0,1, . . . ,Nh �1,
u0 = y0,

where K1 = f (tn + c1 h, un +ha11 K1); then, by setting c1 = 0, b1 = 1, and a11 = 0, i.e. with
the following Butcher’s array:

0 0
1

we have the RK1 method, corresponding to the forward Euler method (8.3), being K1 =
f (tn,un).

• s = 2, RK2. In this case, Eq. (8.9) reads:
⇢

un+1 = un +hb1 K1 +hb2 K2 for n = 0,1, . . . ,Nh �1,
u0 = y0,
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where K1 = f (tn + c1 h, un +ha11 K1 +ha12 K2) and K2 = f (tn + c2 h, un +ha21 K1 +ha22 K2).
Then, we consider the following Butcher’s array:

0 0 0
1 1 0

1/2 1/2

for which we obtain the RK2 method, i.e. the Heun method (8.7), being K1 = f (tn,un) and
K2 = f (tn+1,un +hK1).

• s = 4, RK4. We consider the following Butcher’s array:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0

1 0 0 1 0
1/6 1/3 1/3 1/6

which yields:
8

<

:

un+1 = un +h
✓

1
6

K1 +
1
3

K2 +
1
3

K3 +
1
6

K4

◆

for n = 0,1, . . . ,Nh �1,

u0 = y0,

where K1 = f (tn, un), K2 = f
✓

tn +
h
2
, un +

h
2

K1

◆

, K3 = f
✓

tn +
h
2
, un +

h
2

K2

◆

, and K4 =

f (tn+1, un +hK3), being tn +h ⌘ tn+1. This RK4 method has order of accuracy 4.

Regions of absolute stability A for the
RK1, RK2, and RK4 methods for the
model problem (8.1). The regions A
are inside the lines representing their
boundaries.

⌥

8.2.8 Multistep methods
Multistep methods indicate a family of methods for which the approximate solution un+1 is obtained
by using un, . . . ,un�p for some p � 0, being p+ 1 the number of steps. A multistep method for
approximating the Cauchy problem (8.1) reads:

un+1 =
p

Â
j=0

a j un� j +h
p

Â
j=�1

b j f (tn� j,un� j) for n = p, . . . ,Nh �1, (8.10)

given u0, . . . ,up, for some coefficients {a j}p
j=0 and {b j}p

j=�1 which determine the multistep method.
If b�1 = 0, the method is explicit, otherwise it is implicit. A multistep method is consistent if

p

Â
j=0

a j = 1 and
p

Â
j=0

j a j +
p

Â
j=�1

b j = 1.
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⌥ Example 8.10 We consider some one step methods, i.e. for p = 0, reading from Eq. (8.10):

un+1 = a0 un +hb�1 f (tn+1,un+1)+hb0 f (tn,un) for n = 0,1, . . . ,Nh �1,

given u0. If a0 = 1, b�1 = 0, and b0 = 1, we obtain the forward Euler method (8.3); if a0 = 1,

b�1 = 1, and b0 = 0, we have the backward Euler method (8.4). Finally, for a0 = 1, b�1 =
1
2

, and

b0 =
1
2

, we obtain the Crank–Nicolson method (8.6). ⌥

⌥ Example 8.11 We consider two common multistep methods.
• AB3 indicates the explicit Adam–Bashforth method with order of accuracy 3, which is a 3

steps method (p = 2). From Eq. (8.10), we have:

un+1 = un+
h
12

[23 f (tn,un)�16 f (tn�1,un�1)+5 f (tn�2,un�2)] for n = 2, . . . ,Nh�1,

for which the coefficients are a0 = 1, a1 = a2 = 0, b�1 = 0, b0 =
23
12

, b1 =�16
12

, and b2 =
5
12

.
• AM4 indicates the implicit Adam–Moulton method with order of accuracy 4, which is a 3

steps method (p = 2). From Eq. (8.10), we have:

un+1 = un +
h
24

[9 f (tn+1,un+1)+19 f (tn,un)�5 f (tn�1,un�1)+ f (tn�2,un�2)] ,

for n = 2, . . . ,Nh�1, with a0 = 1, a1 = a2 = 0, b�1 =
9

24
, b0 =

19
24

, b1 =� 5
24

, and b2 =
1
24

.

Regions of absolute stability A for the
AB3 and AM4 methods for the model
problem (8.1). The regions A are in-
side the lines representing their bound-
aries.

⌥

8.3 Numerical Approximation of Systems of Ordinary Differential Equations
We consider the numerical approximation of systems of ODEs. First, we define the Cauchy problem
and then we consider the q–method for the approximation of these class of problems.

8.3.1 The Cauchy problem, examples, and definitions
Definition 8.8 Let us consider the interval I = (t0, t f ) ⇢ R, then the vector–valued Cauchy
problem reads:

find y : I ⇢ Rm ! Rm :

( dy

dt
(t) = f(t,y(t)) for all t 2 I,

y(t0) = y0,
(8.11)
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where m � 1, f(t,y) : I ⇥Rm ! Rm, and y0 is the initial datum.

By referring to Eq. (8.11), we have y(t) =

8

>

<

>

:

y1(t)
...

ym(t)

9

>

=

>

;

and f(t,y) =

8

>

<

>

:

f1(t,y)
...

fm(t,y)

9

>

=

>

;

; moreover, we

assume f(t,y) as continuous in both the arguments.

Definition 8.9 If f(t,y) : I ⇥Rm ! Rm is in the form:

f(t,y) = Ay+g(t),

with A 2 Rm⇥m and g(t) : I ! Rm, then, the system of ODEs is in non homogeneous form with
constant coefficients, while in homogeneous form if g(t) = 0 for all t 2 (t0, t f ].

⌥ Example 8.12 Lotka–Volterra prey–predator model. By referring to Eq. (8.11), we consider
f(t,y) = Ay+g(t), i.e. a system in non homogeneous form with constant coefficients; specifically,

m = 2, A =



�b1C1 �d2C1
d1C2 b2C2

�

, and g = (C1,�C2)
T , with b1, b2, d1, d2, C1, and C2 suitable

coefficients. The model can be used to determine the evolution in time t of preys y1(t) and predators

y2(t) in a closed environment. We set b1 =
1

100
, b2 = 0, d1 =

1
50

, d2 =
1
30

, C1 = 3, C2 = 1,

y0 = (60,30)T , t0 = 0, and t f = 500.

Number of preys and predators vs. time Trajectory in the phases plane

⌥

8.3.2 q–method
Analogously to the case m = 1, we consider the partition of I = [t0, t f ] into Nh subintervals of equal

size h =
t f � t0

Nh
for which tn = t0 +nh for n = 0,1, . . . ,Nh. Then, we indicate with yn = y(tn) the

evaluation of y(t) at t = tn, while with un the numerical solution at t = tn.
Let us introduce the parameter q 2 R such that q 2 [0,1]; then, the q–method for the approxi-

mation of the Cauchy problem (8.11) reads:
⇢

un+1 = un +h [(1�q) f(tn,un)+q f(tn+1,un+1)] for n = 0,1, . . . ,Nh �1,
u0 = y0.

(8.12)
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Remark 8.15 The q–method is explicit for q = 0, while is an implicit method for q 2 (0,1].

Remark 8.16 If the system is in non homogeneous form with constant coefficients according
with Definition 8.9, then the q–method reads:
⇢

(I �hq A) un+1 = [I +h(1�q)A] un +h [(1�q)g(tn)+q g(tn+1)] for n = 0,1, . . . ,Nh �1,
u0 = y0.

We observe that we need to solve a linear system with the matrix (I �hq A) for each n =
0,1, . . . ,Nh �1, unless q = 0 (i.e. when the method is explicit).

For q = 0, the q–method coincides with the forward Euler method for systems of ODEs, reading:
⇢

un+1 = un +h f(tn,un) for n = 0,1, . . . ,Nh �1,
u0 = y0.

For q = 1, the q–method yields the backward Euler method, which reads:
⇢

un+1 = un +h f(tn+1,un+1) for n = 0,1, . . . ,Nh �1,
u0 = y0.

Similarly, for q =
1
2

in Eq. (8.12), one obtains the Crank–Nicolson method:

(

un+1 = un +
h
2
[f(tn,un)+ f(tn+1,un+1)] for n = 0,1, . . . ,Nh �1,

u0 = y0.

Definition 8.10 The error associated to the numerical approximation of the Cauchy prob-
lem (8.11) at t = tn is en := kyn �unk for some n = 0,1, . . . ,Nh. If one has:

en  een :=C hp,

with een the error estimator, being C a positive constant independent of h, then the method has
convergence order p > 0 (order of accuracy of the method).

Remark 8.17 If the solution of the Cauchy problem (8.11) is y 2C2(I), then the forward (q = 0)
and backward (q = 1) Euler methods converge with order p = 1 in h.

Remark 8.18 If y 2C3(I), the Crank–Nicolson (q =
1
2

) method converges with order p = 2.

Remark 8.19 Even if it is not a q–method according to Eq. (8.12), one can deduce the Heun
method for systems of ODEs by applying Eq. (8.7) to Eq. (8.11), thus reading:

8

>

<

>

:

u

⇤
n+1 = un +h f(tn,un),

un+1 = un +
h
2
⇥

f(tn,un)+ f(tn+1,u
⇤
n+1)

⇤

for n = 0,1, . . . ,Nh �1,
u0 = y0.
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Let us consider a system of ODEs in non homogeneous form with constant coefficients according
with Definition 8.9, for which f(t,y) = Ay + g(t). By assuming that Re{li(A)} < 0 for all
i = 1, . . . ,m, then the forward Euler and Heun methods are conditionally absolutely stable for:

0 < h < hmax =
2

r(A)
,

where r(A) := max
i=1,...,m

|li(A)| is the spectral radius of the matrix A. Instead, in the case a general

function f(t,y) : I ⇥Rm ! Rm is provided, but such that Re{li(J(t))} < 0 for all i = 1, . . . ,m

and for all t 2 I, being J(t) =
∂ f

∂y

(t,y(t)), the forward Euler and Heun methods are conditionally

absolutely stable for:

0 < h < hmax =
2

maxt2I r(J(t))
,

where r(J(t)) := max
i=1,...,m

|li(J(t))|.

8.4 Numerical Approximation of High Order Ordinary Differential Equations
So far, we considered first order ODEs or systems of first order ODEs, namely the Cauchy
problems (8.1) and (8.11), respectively. High order ODEs and systems of high order ODEs, which
are often used as mathematical models for problems of physical interest, can be rewritten as systems
of first order ODEs. Therefore, the numerical solution of high order ODEs can simply be obtained
by rewriting such problems as systems of first order ODEs, which are then approximated by means
of the numerical methods considered for this class of problems, as e.g. the q–method; see Sec. 8.3.2.

8.4.1 Second order ODEs
Let us consider the interval I = (t0, t f )⇢ R, then a second order ODE reads:

find y : I ⇢ R! R :

8

>

>

>

<

>

>

>

:

d2y
dt2 (t) = f

✓

t,y(t),
dy
dt

(t)
◆

for all t 2 I,

dy
dt

(t0) = y1,0,

y(t0) = y0,0,

(8.13)

where f (t,y,w2) : I ⇥R⇥R! R is a given function with three arguments, with y0,0 and y1,0 the

initial data. We introduce now the auxiliary variable w2(t) : I ! R such that w2(t) =
dy
dt

(t) for all
t 2 I. Then, problem (8.13) can be rewritten as the following system of ODEs:

find y, w2 : I ⇢ R! R :

8

>

>

>

>

>

<

>

>

>

>

>

:

dw2

dt
(t) = f (t,y(t),w2(t)) for all t 2 I,

dy
dt

(t) = w2(t) for all t 2 I,
w2(t0) = y1,0,
y(t0) = y0,0,

and, in general, as the Cauchy problem (8.11) for m= 2, y(t)=
⇢

w2(t)
y(t)

�

, f(t,y)=
⇢

f (t,y,w2)
w2

�

,

and y0 =

⇢

y1,0
y0,0

�

; we notice that y : I ! R2 and f(t,y) : I ⇥R2 ! R2.
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⌥ Example 8.13 Let us consider the problem of the dynamics of a concentrated mass anchored
through a spring.

We consider the external force f ext(t), the iner-
tial force f in(t) = mẍ(t), with m the mass, the
elastic force f el(t) = k x(t), with k the elastic
constant of the spring, and the damping force
f dmp(t) = c ẋ(t), with c � 0; x(t) represents the
position of the concentrated mass over time t.

The problem corresponds to the following second order ODE in the time interval I = (t0, t f ):

find x : I ⇢ R! R :

8

<

:

mẍ(t)+ c ẋ(t)+ k x(t) = f ext(t) for all t 2 I,
ẋ(t0) = v0,
x(t0) = x0,

where v0 is the initial velocity of the mass, while x0 its initial position. This second order ODE
can be recast in a system of first order ODEs, i.e. in the form of the Cauchy problem (8.11) with

two variables, by introducing the (auxiliary) velocity variable v : I ! R, i.e. for y(t) =
⇢

v(t)
x(t)

�

,

f(t,y) =

(

� c
m

v� k
m

x+
1
m

f ext(t)
v

)

, and y0 =

⇢

v0
x0

�

. We observe that this system of ODEs

is in non homogeneous form with constant coefficients according to Definition 8.9, i.e. f(t,y) =

Ay+g(t), with A =

"

� c
m

� k
m

1 0

#

and g(t) =

( 1
m

f ext(t)
0

)

.

Let us now assume that f ext(t) = P sin(w t) for some P > 0 and w > 0. Then, one can
show that, after an initial transitory, the solution x(t) assumes the form ex(t) = X sin(w t � f),

where tan(f) =
cw

k�w

2 m
and X =

P
(k�w

2m) cos(f)+ cw sin(f)
. If c = 0, we have f = 0 and

ex(t) = X sin(w t), with X =
P

(k�w

2m)
; w0 =

r

k
m

is called natural angular frequency of the

system, while f0 =
w0

2p

is the natural frequency. If w = w0 (or nearly), then the system is in
resonance conditions.

Ratio
X
P

vs. w for m = 2, k = 4, and c = 0. Ratio
X
P

vs. w for m = 2, k = 4, and c =
1
7

.

⌥
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8.4.2 General high order ODEs
We consider again the interval I = (t0, t f )⇢ R, then a high order ODE, with order m � 2, reads:

find y : I ⇢R!R :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

dmy
dtm (t) = f

✓

t,y(t),
dy
dt

(t), . . . ,
dm�1y
dtm�1 (t)

◆

for all t 2 I,

dm�1y
dtm�1 (t0) = ym�1,0,

...
y(t0) = y0,0,

(8.14)

where f (t,y,w2, . . . ,wm) : I ⇥R⇥R⇥ · · ·⇥R ! R is a given function with m+ 1 arguments,
with {yk,0}m�1

k=0 the initial data. Now, we introduce the auxiliary variables wk(t) : I ! R such that

wk(t) =
dk�1y
dtk�1 (t) for all t 2 I and for k = 2, . . . ,m. In this manner, problem (8.14) can be rewritten

as the following system of ODEs:

find y, w2, . . . , wm : I ⇢R!R :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

dwm

dt
(t) = f (t,y(t),w2(t), . . . ,wm(t)) for all t 2 I,

dwm�1

dt
(t) = wm(t) for all t 2 I,

...
dy
dt

(t) = w2(t) for all t 2 I,
wm(t0) = ym�1,0,

...
w2(t0) = y1,0,
y(t0) = y0,0.

The previous system can be recast in the general form of the Cauchy problem (8.11) for

y(t) =

8

>

>

>

<

>

>

>

:

wm(t)
...

w2(t)
y(t)

9

>

>

>

=

>

>

>

;

, f(t,y) =

8

>

>

>

<

>

>

>

:

f (t,y,w2, . . . ,wm)
wm
...

w2

9

>

>

>

=

>

>

>

;

, and y0 =

8

>

<

>

:

ym�1,0
...

y0,0

9

>

=

>

;

; we observe that

y : I ! Rm and f(t,y) : I ⇥Rm ! Rm.

Remark 8.20 Systems of high order ODEs can be rewritten into systems of first order ODEs,
following the above procedure. If n is the size of the system of p–order ODEs, then the
corresponding system of first order ODEs (8.11) has dimension m = pn.
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