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Stochastic Gradient Descent (SGD) is an optimization algorithm widely used in machine learning. It can be
seen as a more computationally efficient variant of Gradient Descent (GD) that exploits composite structure of
the function to optimize. In this project, we derive a SDE that approximates SGD. This can be considered in
some sense an opposite problem to numerical integration: in the latter, the goal is to derive discrete algorithms
to approximate SDEs, whereas here the goal is to derive a SDE to explain a discrete algorithm. This allows to
get some intuition concerning SGD, at least in the small step-size regime.

Given a lost function f : Rp → R, an initial value x0 ∈ Rp and a step-size h > 0, GD constructs a sequence

of iterates (xk)k≥0 by the update rule: xk+1 = xk − h∇f(xk), where ∇f :=
(

∂f
∂x1

. . . ∂f
∂xp

)⊤
: Rp → Rp is the

gradient of f .1

• (Q1)

1. Show that GD can be interpreted as a forward Euler method applied to the gradient flow (GF)

differential equation: dx(t)
dt = −∇f(x(t)), t > 0, and x(0) = x0.

2. Suppose f ∈ C2(Rp) and L := supRp

∥∥∇2f
∥∥ < ∞ (∇2f denotes the Hessian of f and ∥·∥ the Euclidean

norm for vectors and Frobenius norm for matrices). Let (xk)k denote the GD iterates using step-size
h, and x(t) the solution of GF. Show that, for any fixed T > 0, supk≤⌊T/h⌋

∥∥xk − x(hk)
∥∥ = O(h),

where the hidden constant depends on T, L, and B := sup
Rp

∥∇f∥.

Hint. Show that∥∥xk+1 − x(hk + h)
∥∥ ≤ (1 +O(h))

∥∥xk − x(hk)
∥∥+ ∥x(hk + h)− x(hk) + h∇f(x(hk))∥ (1)

and that ∥x(hk + h)− x(hk) + h∇f(x(hk))∥ = O(h2).

• (Q2) Now, suppose f is of the form

f(x) =
1

n

n∑
i=1

fi(x). (2)

Given (fi)i≤n, x
0 and h, SGD constructs (xk)k≥0 by the stochastic update rule

xk+1 = xk − h∇fik(x
k) where ik ∼ Uniform({1, ..., n}). (3)

In the next two questions, we derive a SDE that approximates SGD, in the spirit of [1] although the
proposed technical pathway is a bit different.

1. Write the SGD update rule as xk+1 = xk − h∇f(xk) +
√
hV k. Show that E

[
V k

∣∣xk
]
= 0 and

E
[
V kV k⊤

∣∣xk
]
= hΣ(xk) with

Σ(x) :=
1

n

n∑
i=1

[∇f(x)−∇fi(x)] [∇f(x)−∇fi(x)]
⊤
. (4)

2. Why, intuitively, does it make sense to approximate SGD by the SDE (5) below?

1We consider only constant step-sizes for simplicity. The notations used in this project are almost the standard ones used in
the machine learning theory literature, except that the parameters to optimize are usually denoted by “w” or “θ”, with “x” being
reserved for input data (a.k.a. covariates).
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• (Q3) Consider the SDE

dXt = −∇f(Xt)dt+
√
h Σ(Xt)

1/2dWt and X0 = x0. (5)

Moreover, consider the following function spaces:

Cℓ
b :=

{
ϕ ∈ Cℓ(Rp;R) s.t. ∃C > 0,∀α ∈ Np, |α| ≤ ℓ, ∥Dαϕ∥L∞ ≤ C

}
, (6)

Cℓ
p :=

{
ϕ ∈ Cℓ(Rp;R) s.t. ∃m,C > 0,∀α ∈ Np, |α| ≤ ℓ, sup

x∈Rp

∥Dαϕ(x)∥
(1 + ∥x∥m)

≤ C,

}
(7)

(the subscript “b” stands for “bounded” and “p” stands for “polynomial growth”).

Let x̃1 = x0 − h∇f(x0) +
√
hṼ 0 where Ṽ 0 ∼ N (0, hΣ(x0)). That is, x̃1 is the iterate after one step of the

Euler-Maruyama method applied to (5) with step size ∆t = h.

1. What is the distribution of x̃1? And of x̃2?

2. Assume that fi ∈ C9
b for all i and take any ϕ ∈ C4

p. Show that there exist C,M > 0 such that∣∣Eϕ(x1)− Eϕ(x̃1)
∣∣ ≤ C

(
1 +

∣∣x0
∣∣M)

hp. (8)

for p ∈ N and determine p.

Hint. It is convenient to do Taylor expansion of ϕ around x0 −h∇f(x0) with remainder in Lagrange
or integral form.

• (Q4) Assume that fi ∈ C9
b for all i. Show that for any ϕ ∈ C4

p, there exists C > 0 such that

∀k ≤ ⌊T/h⌋,
∣∣Eϕ(Xhk)− Eϕ(xk)

∣∣ ≤ Ch. (9)

We will say that (5) is an order-1 weak approximation of SGD (for Cb losses).

Application to quadratic minimization. The next four questions consist in reproducing some of the
experiments from [3].

• (Q5)

1. Let M ∈ Rn×p, y ∈ Rn, and fi(x) =
1
2 |Mi•x− yi|2. Check that f(x) = 1

2n ∥Mx− y∥2 and

Σ(x) =
1

n
M⊤

[
Diag(R)2(x)− 1

n
R(x)R⊤(x)

]
M where R(x) = Mx−y and

[
Diag(R)2

]
ij
= δijR

2
i .

(10)

2. (Overparametrized a.k.a. realizable regime.) The SDE (5) for this particular set (fi)i≤n of loss
functions does not have a simple closed form solution. Consider instead the SDE

dX̃t = −∇f(X̃t)dt+
√
h Σ̃(X̃t)

1/2dWt where Σ̃(x) =
1

n
M⊤

[
1

n
∥Mx− y∥2 I

]
M. (11)

Take X̃0 = 0 and assume that y ∈ Im(M) and MM⊤ is invertible – which is generically the case
when p ≥ n.

(a) Show that W̃t = M(M⊤M)−
1
2Wt is a Brownian motion.

(b) Let x∗ = argminMx=y ∥x∥
2
and et = X̃t −x∗. Exploiting the fact that Met = R(X̃t), show that

d∥et∥2 = −b(h)f(X̃t)dt+ σ(h)f(X̃t)dW̃t,

for some b, σ > 0 independent of X̃t (but otherwise dependent on h, n,M).

(c) Show that 1
2nσmin(MM⊤) ≤ f(X̃t)

∥X̃t−x∗∥2 ≤ 1
2nσmax(MM⊤) and conclude that X̃t converges in

probability to x∗ = argminMx=y ∥x∥
2
as t → ∞ (for h smaller than some constant).

Hint. Write the SDE for zt = log ∥et∥2 and show that E[zt] → −∞ as t → +∞, Var[zt] ≤ Cht, ...

• (Q6)
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1. Let n = 2, p = 2, x0 = 0 and pick any M and y ∈ Im(M). For example, you may draw Mij ∼ N (0, 1)
for each i, j, and y ∼ N (0, In).

2

Let T = 10. For each h ∈ {2−1, 2−2, 2−3, 2−4}, letting K = ⌊T/h⌋,
– Plot the GD iterates (xk

GD)k≤K , as well as f(xk
GD) (on another figure).

– On the same figures, plot the SGD iterates (x(1)k)k, ..., (x
(L)k)k for L = 8 independent runs of

SGD, as well as 1
L

∑L
ℓ=1 f

(
x(ℓ)k

)
.

– On the same figures, plot L = 8 sample paths X
(ℓ)
t of (5) over [0, T ] (for example using the

Euler-Maruyama method with a small time discretization), as well as 1
L

∑L
ℓ=1 f(X

(ℓ)
t ).

Moreover, on the same figures, display some level sets of f .

2. (Underparametrized a.k.a. non-realizable regime.) In the setting and notations of (Q5)-2 (Over-
parametrized a.k.a. realizable regime.), when we instead assume y ̸∈ Im(M) and M⊤M is invertible

(which is generically the case when p < n), one can show that X̃t converges in distribution to
N (x∗, σ2In) where x∗ = argmin f and σ2 = h

2 f(x
∗) [3].

Do the same experiments of (Q6)-1, but with n = 5, p = 2 and y ̸∈ Im(M). Does the limiting

behavior of X̃t match the one of Xt?

A higher-order approximation. As shown in [2], by backward error analysis, one may derive ODEs
approximating GD with arbitrarily high order. As for SDEs modeling SGD, we are only aware of works
showing how to get one order higher [1]. Here we go just one order higher than GF resp. (5).

• (Q7)

1. Suppose f ∈ C3(Rp) and supRp

∥∥∇2f
∥∥ < ∞, let (xk)k denote the GD iterates using step-size h, and

let x(t) be the solution of the higher-resolution ODE of GD

dx(t)

dt
= −∇f(x(t))− h

2
∇2f(x(t))∇f(x(t)) and x(0) = x0. (12)

Show that, for any fixed T > 0, supk≤⌊T/h⌋
∥∥xk − x(hk)

∥∥ = O(h2), where hidden constants can have
similar dependency as in (Q1) .

2. One can show that

dXt =

[
−∇f(Xt)−

h

2
∇2f(Xt)∇f(Xt)

]
dt+

√
h Σ(Xt)

1/2dWt and X0 = x0 (13)

is an order-2 weak approximation of SGD; i.e., for any ϕ ∈ C6
p, there exists C > 0 such that

∀k ≤ ⌊T/h⌋,
∣∣Eϕ(Xhk)− Eϕ(xk)

∣∣ ≤ Ch2. (14)

Verify this fact numerically for some linear ϕ, by plotting maxk≤⌊T/h⌋
∣∣Eϕ(Xhk)− Eϕ(xk)

∣∣ as a
function of h in log-log scale, where Xt is the solution of (13).

Comparison with Langevin dynamics. Another variant of GD that involves randomness is noisy
Gradient Descent (NGD), which, given f , x0 and h, τ > 0, constructs iterates (xk)k by the update rule

xk+1 = xk − h∇f(xk) +
√
2hτ W k where W k ∼ N (0, Ip). (15)

(Note that f does not have to be of the form 1
n

∑
i fi.)

• (Q8)

1. Explain that NGD is equivalent to the Euler-Maruyama method applied to the (damped) Langevin
equation

dXt = −∇f(Xt)dt+
√
2τ dWt. (16)

2. How does the Milstein scheme applied to (16) reads? Argument.

2For readability of the figures, please choose (cherry-pick) an easy instance, i.e., M such that σ1(M)/σ2(M) is not too large.
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3. Let M ∈ Rn×p, y ∈ Rn and f(x) = 1
2n ∥Mx− y∥2. Write the SDE (16) for this particular f . Solve

it. Show that, if M⊤M is invertible, the solution Xt converges in distribution to a Gaussian random
variable, and specify the mean and variance of the limiting distribution.3

4. Same question as in (Q6)-1, with “(5)” replaced by “(16)” and “SGD” replaced by “NGD”, and
τ = 0.01. The parameter τ is commonly referred to as “temperature”; can you explain why?
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3More generally one can show that, provided that ∀x, f(x) ≥ µx2 − A for some µ > 0 and A < ∞, the solution Xt of (16)

converges in distribution and the limiting distribution has probability density function p∞(x) ∝ e−
1
τ
f(x). But that’s another

story...
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