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Let us consider the stochastic basis (Q, F, P, (F;),~), Where the filtration (F;),-, satisfies the usual conditions.
Denote with (Wi)yzl a series of n-independent R!-dimensional Brownian motions adapted to the aforemen-
tioned filtration. Moreover, we consider ({i)?zl a collection of R%valued i.i.d. random variables, which are
Fo-measurable. Furthermore, we denote Pp(Rd) for p > 0 the set of probability measures 1 on R? such that

[ putiw) < +oc,
Rd

where | - | denotes the Euclidean norm in RY. The goal of this project is to analyze theoretically and simulate
numerically a system of n interacting particles (an Ao X ’n>, driven by stochastic differential equations

(SDEs) of the form
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where a: R? x Py(R?Y) — R? | b: R? x Py(RY) — R¥*! are the drift and the diffusion coefficients, respectively,
whereas pij is the so-called empirical measure. Equation (1) represents an interacting noisy particle systems, i.e
a system of n particles (X;""); affected by noise, where the evolution of each particle i is driven by the same drift
and diffusion terms, and is influenced by the position of all other particles through the empirical measure u;'.
This is an example of law-dependent process and this property carries additional difficulties in the numerical
simulation of SDEs like (1).

(1)

e (Q1) Let us consider the following particle system (called Consensus Based Dynamics - CBD)

AX[" = —q (XM - X7 de+ AW, X =€ i=12,m
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for ¢ > 0. The CBD is an example of interacting noisy particle systems. For this kind of dynamics, it is
often very interesting to consider the case when the number of particles is very large, i.e. n — 4oc.

1. Prove that lim,, X' = E [¢*] for all ¢ and almost surely (a.s.).
Hint: write an SDE for X[

2. Prove that lim, X™’ =Y a.s., where
Ay} = —¢ (V) ~E[¢']) dt + AW, ¥y =¢" (2)
3. Show that E [V}'] = E [¢'] for all ¢.

e (Q2) Equation (2) is an example of a McKean-Vlasov SDE (MV-SDE), i.e. a dynamics whose coefficients
also depend on the law of the solution. A general McKean-Vlasov SDE has the following form:
AV =a (Yoo ) dt +0 (Y, uf ) dW,, Yo =¢

3
sz =L(Y;), Vt=0 ®



where 11" = (1] )¢ejo,r) denotes the law of Y, i.e L(Y). We say that the pair (Y, u) is a strong solution of
(3) if Y is a continuous adapted process, p1 is a probability measure on C([0,T]; R), such that (3) is a.s.
satisfied.

Moreover, given P,(X), with (X,d) a metric space and p > 0, we define the p-Wasserstein distance
between two measures p,n € Pp(X) as

Wp(p,m) = ( inf d(z,y)"m(dz,dy) %,
(it o )

m€Il(p,m)

where II is the set of all the couplings between p and 7, ie. all joint measures m € Pp(X x X) s.t.
T(AXX) = p(A) and (X x A) = n(A) VA € B(X). If (X, d) is complete, then (P,(X),W,) is a complete
and separable metric space.

Assumption 1. We consider the following assumptions to be fulfilled:
— the initial states & and (fi)ieN are i.i.d. with finite second moment. Moreover, the Brownian motions
(Wi)ieN are independent and m-dimensional.
— the drift a : R% x P, (]Rd) S RY and b: R x Py (Rd) — R¥*! gre Lipschitz, in the sense that there
exists a constant L > 0 such that
ja(a,2) —a(2',2)| + [b(x,2) =b(2',2")| < L(lz — 2|+ Wa(z,2), Va2’ €R?, ¥z,2' € Py (RY)
— the drift a and the diffusion b satisfy the following linear-growth bound condition
aw,2) + b, 2 < Cun( 4+ ol + [ Pda)), v € R,z Po (BY)
Rd

for some constant Clg, > 0.

Prove the existence and uniqueness of strong solutions of (3) under Assumption 1.
Hints: the prove of well-posedness of (3) is very similar to the one of standard SDFEs (see [4, Theorem
4.5.8] or [5, Section 2.3]). You can follow these steps:

1. Define the map F : Py (C([0,T];R?)) — Pa (C([0, T|; R?)), where C([0, T|;R?) is endowed with the
uniform convergence metric, as F(u) := L(Y*), with Y* solution of the following SDE

dY;&# :a()/tu,‘LLt)dt—|—b(Y;H’Mt)th7 YO# 257 (4)

where = (pi¢)¢ejo,r)- Notice that if p is fized, then (4) has a unique strong solution [4, 5]. You have
to use some fized point theorem argument on F' to yield the wellposedness of (3). In order to do so,
you should exploit the definition of Wasserstein distance and bound it with a particular coupling.

2. You can assume that supgco g Wa(ps,ns) < Wa(u,n), where Wa(u,n) is the Wasserstein distance
defined on Po (C([0,1]; RY)) and C([0,t]; R?) is endowed with the uniform convergence metric.

3. It will be needed to show that

t
Bl sup Y2 = YIP) < C [ Wi )ir o)
s€[0,t] 0

for C >0 and to do so, consider also using Gronwall’s lemma.
4. Use (5) and Gronwall’s lemma again, and infer from the usual Picard iteration argument for standard
SDEs that there exists a unique fized point.

Report only the steps that are substantially different from existence and uniqueness result for standard
SDEs under Assumption 1 ([4, 5]).

e (Q3) We go back to the n-particle SDE system (1).

1. Prove the well-posedness of (1) under Assumption 1.

Hint: Notice that (1) can be rewritten in the It6 SDE form and verify that the drift and the diffusion
satisfy the standard assumptions of well-posedness for general SDEs.



2. Prove the propagation of chaos for (1), i.e.

lim E[W; (1", 1)) = 0,

n—r oo

where p = L(Y") defined in (3). Is the result coherent with (Q1) ?
Hint:

(a) First, compare (1) with n copies of (3), namely {Y?},—1 _,, driven by the same n-indipendent
Brownian motions W} and with the same initial data . Defining the empirical measure n” =
% S dy;i, you can bound the error in the following way

EWV3 (1™, 1)) < 2E[W3 (1", n™)] + 2E[W; (0", )] (6)

(b) For estimating the first term on the right hand side, the proof will follow very closely to the one
of (Q2), comparing (1) with {Y?},—; ..

(¢) To conclude, use the Gronwall’s lemma and the following result.

Theorem 1. Suppose {Y'} are i.i.d R%-valued random variables having law p. Consider also
the empirical measure " = % >, Oyi. If p e Pp(RY), with p > 1, then

Jim EDV (", )] = 0.

e (Q4) Suppose that the law of Y; (from (3)) has a density p(x,t) € C*1(R? x (0,+00)), whereas the law
of € has density pg. Then p is a solution of the initial value problem for the Fokker-Planck equation (in
the strong form)

% = [:*p7 in (.T,t) 6 Rd X (07 +OO),

p(z,0) = po, inzeR?

(7)

where £* is the adjoint operator of the generator £ of the SDE in (3). One has a weak version of (7),
too. For more details on the whole topic, see for example [6].

1. Derive the generator of (3) and the Fokker-Planck Equation (FPE) associated to (3). What is the
main difference of this FPE with respect to the one of a standard SDE?

Hint: the term y) should be treated as fixed when using It6’s formula.

2. What is a natural boundary condition to assume for the well-posedness of the PDE (7),i.e. lim p(z,t)

|| —=+o0
for all ¢?

e (Q5) Starting from this point, we will analyze some numerical aspects inherent to the McKean Vlasov
equations.

Let us consider the following scalar Black-Scholes model with expectation:
dS(t) = (IS(t) — E[S(t)])dt + A(S(t) + E[S(t)])dW, (8)
where W} is a one-dimensional Brownian motion, I = 1.1, A = 0.1, Sy = 1, T' =1, for all the paths.

1. Implement the Euler Scheme described in [2, Equation 2.3], whose m-step for a general MV-SDE in
dimension 1 reads as

X = X e a (X, ) At b (X ) AW XP =€ =120 n

tm41
L o)
no _
Pt = Z‘Sx:f’
k=1
for a uniform step size At = t,, 41 — &, for m = 1,... M with At = % and AW, usual Brownian

increment. KEstimate numerically the strong rate of convergence in the number of particles fixed
the timestep At (you can simulate true solutions with the same method with a number of particles
N = 10° or 10°) and the rate in At fixed the number of particles (you can simulate true solution
with the same method with a timestep At ~ 1075 or 107%; in case your laptop does not sustain
simulations with these data, you can tune them.)



2. Discuss the overall computational cost of the Algorithm based on the Euler Scheme considered in
point (Q5)-1 to achieve a given tollerance Tol on the strong error.

3. Implement the Milstein scheme described by [1, Equation 2.11], which for a general MV-SDE in
dimension 1 reads

Xt =X a (X7 ) vy (X0 ) AW

t7n+1 tWL

+0,b (X,Zj;f,ugn)b(xnvi ur ) (W - At), XMi=€ i=12...n

tm ? trn 2 2 (10)
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where 9, denotes the derivative with respect to the first variable of b, and answer the same question
of (Q5)-1 (in case your laptop does not sustain simulations with these data, you can tune them.).

4. Discuss the whole computational cost of the Algorithm considered in point (Q5)-3 to achieve a given
tolerance T'ol on the strong error.

e (Q6) Suppose to approximate the FPE described by Equation (7) via a finite difference method of your
choice with mesh size h = % and call this solution 4™. In this case, you will have to truncate the domain
and enforce some boundary condition (e.g. homogeneus Dirichlet). Consider to use " instead of the
empirical measure in the Euler scheme in (9) applied to (3). Discuss (briefly) the full approximation

algorithm, the full computational cost and how the rate of convergence changes.

e (Q7) Well-posedness of equation (3) can be proven also in the case of local Lipschitz drift and diffusion,
satisfying a weak monotonicity condition. However, its numerical simulation can present some problems.
Let us consider the following equation

2
4z, = (204]E[Zt] 45 QZt - Zf) dt +~Z,dWy, (11)

where W, is a one-dimensional Brownian motion and Z;(w) € R for all w.

1. Consider the particle system method in (9). Suppose that Zp =1, a =0.25, 5 =2, v =15, T = 3.
Simulate (11) with a number of particles N = 2000 and time mesh At = 0.05 and plot all the paths
in one graph.

2. Repeat the same computation of (Q7)-1 but with a number of particles N = 2500, 5000, 7500, 10000, 15000.
Comment the results.

3. Repeat the same computation of (Q7)-1 but with diffusion noise v = 0.5, 1, 1.5,2,2.5. Comment the
results.

4. The effect that you should have noticed in the previous points is called particle corruption. Can you
explain why it appears? Actually, this kind of effect can emerge also in the case of standard SDEs.
However, the mean-square error for a standard SDE is usually “less affected” than the one for a
McKean-Vlasov SDE. Can you explain why?

e (Q8) The authors in [3] suggests a split-step method for McKean-Vlasov SDEs to deal with equations
like (11). The m-step reads as

m tm m

Yoy = Xt (Vid ) A (12)

Xyt =Yk b (Yo ) At b (Ydul ) AW, XP =€ i=1,2m (13)

tm41
n n
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where the drift ¢ has been decomposed as a := v 4+ u, where u satisfies Assumption 1, while v is locally
Lipschitz in space and globally in the measure variable, and satisfies the one-sided Lipschitz property:
3L, > 0 such that (x — y,v(z, u) — v(y, 1)) < Ly|z — y|?, for all 7,y € RY, u € Py(RY).

1. Implement the method with the same data of (Q7)-2 and comments the results.

Hint: For the implicit step (12) you can use an iterative method of your choice, for example
scipy.optimize.newton for Python or newtons_method for Matlab.



2. Implement the method with the same data of (Q7)-3 and comments the results.

3. What is the total computational cost of the split-step algorithm? Discuss possible improvements in
the implementation.
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