Project for the course "Numerical Integration for Stochastic Differential Equations"

Modeling asset pricing via SDEs

Prof. Fabio Nobile

Academic Year 2024/2025

In finance, an asset is a resource with economic value that an investor owns with the expectation that it will give a future benefit. Specifically, the price of an asset S(t) is a quantity whose current value is known, but the future one is not. Its evolution depends on the expected rate of return I(t), i.e., the estimated profit that an investor expects to achieve, and on the volatility $\sigma(t)$, which is a measure of the risk in the market. By their nature, I(t) and $\sigma(t)$ should be nonnegative. All of these quantities can vary in time and are supposed to be random. Therefore, one can see S, I, and σ as stochastic processes.

Let us consider the following stochastic basis $(\Omega, \mathcal{A}, \mathbb{P}; (\mathcal{F}_t)_{t \geq 0})$ and assume that S(t) is described by the following one-dimensional equation

$$dS(t) = I(t)S(t)dt + \sigma(t)S(t)dW(t), \tag{1}$$

where W is a one-dimensional Brownian-motion adapted to the filtration $(\mathcal{F}_t)_{t\geq 0}$. We are interested in knowing the stochastic properties of (1) and numerically quantifying the price of an asset.

- (Q1) In order to determine the price of an asset over time, we need to solve the SDE (1).
 - 1. Derive a closed form expression for the solution of (1) assuming constant $I(t) \equiv I$, $\sigma(t) \equiv \sigma$, with $\sigma, I \in \mathbb{R}_+$.
 - 2. Show that the process $G(t) = e^{\sigma W(t)}$ is a submartingale, but not a martingale.
 - 3. Find for which values of I S(t) in **(Q1)-1** is a martingale.
 - 4. Find the solution of (1) in closed form assuming generic I(t), $\sigma(t)$.
- (Q2) Assume that the interest rate I(t) is stochastic and it is determined by some Itô differential equation. Consider the following equation

$$dI(t) = (a - bI(t))dt + cdW_t^{(2)}, \tag{2}$$

with I(0) > 0, a, b, c > 0 and $W_t^{(2)}$ a one-dimensional Brownian motion adapted to $(\mathcal{F}_t)_{t \geq 0}$, independent of W_t .

- 1. Find a closed form expression for the solution of (2).
- 2. What is the distribution of I(t)? Compute the probability that I(t) < 0 with a = b = c = 1 for t = 1, 5, 10, 15, 20. Could this behavior be a problem from the financial point of view?
- 3. Let us consider the following alternative interest model

$$dI(t) = (a - bI(t))dt + c\sqrt{I(t)}dW_t^{(2)},$$
(3)

It is known that (3) admits a unique strong solution I. Prove that I(t) is nonnegative for all $t \in \mathbb{R}$. Hint: you can consider the following ausiliary process (which also have a unique strong solution)

$$dI(t) = (a - bI(t))dt + c\sqrt{(I(t) \vee 0)}dW_t^{(2)}, \tag{4}$$

and the stopping time $\tau_{\epsilon} = \inf\{t : I(t) = -\varepsilon\}$ for any ε small enough and show that $\mathbb{P}(\tau_{\epsilon} < \infty) = 0$.

- 4. (2) is a mean-reverting process. What does it mean? If $I(0) = \frac{a}{b}$, what can we say about $\mathbb{E}[I(t)]$? And if $I(0) \neq \frac{a}{b}$? Is (3) mean-reverting?
- (Q3) Let us suppose that $\sigma = \sqrt{v(t)}$, where v(t) is non-negative process defined as $v(t) = \tilde{\sigma}^2(t)$ with

$$d\tilde{\sigma}(t) = -\lambda \tilde{\sigma}(t)dt + f dW_t^{(3)}, \tag{5}$$

where $\lambda, f > 0$ and $W_t^{(3)}$ is a one-dimensional Brownian motion adapted to $(\mathcal{F}_t)_{t \geq 0}$, independent of W_t and $W_t^{(2)}$ (notice that in this model $\sigma(t) = |\tilde{\sigma}(t)|$).

- 1. Derive a closed form expression for the solution of (5).
- 2. The process $\tilde{\sigma}(t)$ of (5) has the property of being ergodic, i.e., its distribution μ_t tends for $t \to \infty$ to an invariant measure, which we denote by μ_{∞} . Such limit distribution admits a probability density function ρ_{∞} with respect to the Lebesgue measure on \mathbb{R} . Derive the invariant measure of (5) and verify that the corresponding probability density function satisfies the Fokker-Planck equation.
- 3. Show that the following equation holds for the square volatility process $v(t) = \tilde{\sigma}^2(t)$ with suitable values of k, μ, η

$$dv(t) = k \left[\mu - v(t)\right] dt + \eta \sqrt{v(t)} dW_t^{(3)}, \tag{6}$$

and specify k, μ, η as functions of λ and f. Briefly argument whether (6) is a good model from the financial point of view or not.

- (Q4) Suppose to approximate (1) with I(t) = I and $\sigma(t) = \sigma$ with the Euler-Maruyama method using a uniform time-step Δt , and denote by $\hat{S}(t)$ its numerical solution (continuously interpolated process) on [0,T].
 - 1. Which is the order of convergence of $\sqrt{\mathbb{E}[\sup_{0 \le t \le T} (S(t) \hat{S}(t))^2]}$?
 - 2. Suppose now that I(t) in (1) is described by (2) and consider an approximation of I(t) by the Euler-Maruyama method with a uniform time-step Δt (the same as in 1.). Which is the order of convergence of $\sqrt{\mathbb{E}[\sup_{0 \le t \le T} (S(t) \hat{S}(t))^2]}$? Provide a rigorous argument.

Hint: To simplify your argument, you can consider the following modification of (1)

$$dS = \varphi_M(I(t))S(t)dt + \varphi_M(\sigma(t))S(t)dW_t,$$

where $\varphi_M(x) = \max\{-M, \min\{M, x\}\}$ and M > 0 a large enough constant. Notice that φ_M is bounded and Lipschitz function with Lipschitz constant 1. You might need to derive uniform bounds on L^p norms $(p \ge 2)$ of the exact solution $\mathbb{E}[|S(t)|^p]$ and numerical one $\mathbb{E}[|\hat{S}(t)|^p]$.

- 3. Suppose that I(t) and $\sigma(t)$ in (1) are described by (2) and (5), respectively. Consider a discretization of both of them by the Euler-Maruyama method with a uniform time-step Δt (the same as 1.). Which is the order of convergence of $\sqrt{\mathbb{E}[\sup_{0 \le t \le T} (S(t) \hat{S}(t))^2]}$? Which is the order of convergence of the Euler-Maruyama method applied to I(t) and $\sigma(t)$? Provide rigorous arguments.
- 4. Let us assume that $a=0.1,\ b=c=0.5,\ d=f=1.$ Consider T=2, and simulate the Brownian motion $W_t,W_t^{(2)},W_t^{(3)}$ with a uniform time-step $\mathrm{d}t=10^{-5}$ (i.e. 200001 points) and M=100 paths. Moreover, assume S(0)=2, I(0)=0.5, and $\sigma(0)=2$ for all paths. Compute the solution S(t) of (1) with interest rate I(t) and $\sigma(t)$ defined by the closed formulae obtained in (Q3)-1. and (Q4)-1 (you can approximate the integrals present therein with a left point quadrature formula as in the Euler method, and using the generated paths of $W_t,W_t^{(2)},W_t^{(3)}$), and their Euler-Maruyama approximation for uniform $\Delta t=5\cdot 10^{-4}, 10^{-3}, 4\cdot 10^{-3}, 8\cdot 10^{-3}, 10^{-2}$. Plot the error $\sqrt{\mathbb{E}[(S(T)-\hat{S}(T))^2]}$ (you can estimate the expectation with a Monte-Carlo procedure). What order do you observe? Is it consistent with your conclusions of the previous points?

(If your machine does not sustain computations with these time-steps, you can change them accordingly.)

- (Q5) Assume that in (1), I(t) = I and $\sigma(t) = \sigma$ are <u>real</u> constants, and also assume S(0) = 2. Consider T = 5 and M = 1000 paths.
 - 1. Show that

$$\lim_{t \to +\infty} \frac{1}{t} \log(S(t)) = I - \frac{\sigma^2}{2}, \text{ a.s. if } I \neq \frac{\sigma^2}{2}$$
 (7)

and

$$\limsup_{t \to +\infty} \frac{\log(S(t))}{\sqrt{2t \log \log t}} = \sigma \text{ and } \liminf_{t \to +\infty} \frac{\log(S(t))}{\sqrt{2t \log \log t}} = -\sigma, \text{ a.s. if } I = \frac{\sigma^2}{2}$$
 (8)

Deduce a condition of mean-square stability of the price S, i.e. $\lim_{t\to\infty} \mathbb{E}[|S_t|^2] = 0$.

- 2. Assume $\sigma = 0.12$. For $\Delta t = 0.01, 0.02, 0.05, 0.1$, plot $\mathbb{E}[|S(t)|^2]$ for the interest rates I = 0.002, 0.006, 0.0072, 0.012, 0.024 (you can approximate it with a forward Euler method) and comment the results. Is this performance a good asset behavior? Comment.
- 3. Suppose to apply the stochastic- θ method to (1), denoting its solution by $(S_n^{\theta})_n$. Discuss the mean-square stability of the stochastic- θ method applied to (1), i.e. $\lim_n \mathbb{E}[|S_n^{\theta}|^2] = 0$, and derive sufficient conditions of mean-square stability for $\theta = 0, \frac{1}{2}, 1$. Verify numerically the conditions for $\theta = 0, \frac{1}{2}, 1$, with the data of (Q5)-2.
- 4. Assume now that $\sigma(t)$ is no more constant and satisfies equation (5), in (Q3). Consider an approximation of $\sigma(t)$ by the Euler-Maruyama method, denoting its solution by $(\sigma_n)_n$. Find a condition on Δt so that there exists a constant M > 0 such that $\mathbb{E}[|\sigma_n|^2] \leq M$ for all n. Do we have mean-square stability of $(\sigma_n)_n$ under such condition on Δt ? Verify these properties numerically for $f = 0.2, \lambda = 0.1, T = 5$, and $\sigma_0 = 1$.
- (Q6) Suppose to have a *basket of options*, i.e. a collection of multiple financial securities, composed only by assets whose prices are described by the following system of SDEs

$$dS(t) = IS(t)dt + \sigma K(S(t) \circ dW_t), \tag{9}$$

where, $S(t,\omega) \in \mathbb{R}^n$ fixed $\omega \in \Omega$, $(S(t) \circ dW_t)$ denote the Hadamard product between S(t) and dW_t , i.e. $A \circ B = [a_{ij}b_{ij}]_{ij}$ for $A, B \in \mathbb{R}^{m,n}$, $K \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, I is a symmetric positive definite matrix, σ is a nonnegative constants and W is a n-dimensional Brownian motion adapted to $(\mathcal{F}_t)_{t>0}$.

- 1. Derive an equation for $G(t) := \mathbb{E}[S(t)S(t)^{\top}].$
- 2. Assume $T=1, I=0.01 \cdot I_{d\times d}, K=RR^{\top}$, with R a matrix whose entries are sampled from a Unif(0,1) r.v., and $\sigma=10^{-3}$.

Approximate (9) with a Euler-Maruyama method. Denote $(S_n)_n$ the approximate solution and compute the approximate matrix $(\mathbb{E}[S_nS_n^{\top}])_n$ at discrete times $t_n = n\Delta t$, approximating the expectation \mathbb{E} with a Monte-Carlo method $\hat{\mathbb{E}}$. Compute the error

$$\sqrt{\sum_{n=0}^{N} \|\hat{\mathbb{E}}[S_n S_n^{\top}] - G(t_n)\|_F^2 \Delta t}$$
 (10)

for $\Delta t = 0.001, 0.01, 0.05, 0.1, M = 100, d = 5$. Which are the sources of errors in computing (10)? Repeat the same computations but with M = 2000 and comment the results.

- (Q7) Consider equation (6). Let $k=1, \mu=1, v(0)=1$ for all the M=500 paths.
 - 1. In [1], a Euler-type method based on the Lamperti transformation $Y_t = \sqrt{v_t}$ is proposed, obtaining the accuracy result of Theorem 1.1 therein. Derive the same discretization scheme for (6) and show with a simulation that Theorem 1.1 holds, fixing $\eta = 0.5, 1.5, 1.75$. Compare the convergence rate with the one of the Stochastic θ -method with $\theta = 1$ applied to the same problem (you can compute the true solution using [1] and a very fine mesh (at least $\Delta t \approx 10^{-5}$)). Comment the results.
 - 2. Why can't we use the formula obtained in (Q3)-1 in point (Q7)-1?
- (Q8) The theory of asset pricing is the standard tool in the evaluation of *options*. An option is a contract between two parties, a "writer" and a "holder". Both sides agree that a fixed time t = T, called the *expire date*, the writer will pay an amount of money to the holder, called the *payoff*, whereas the contract is assumed to be stipulated at time t = 0. The value of the *payoff* is determined by the behavior of the price S(t) of the chosen asset in the interval of time [0,T]. On the other hand, the holder does have to pay a small amount, called "premium", to the writer at time t = 0 by contract. For example, let us consider a "European call" option, which is defined by the following payoff function

$$P(S(T)) = \max\{S(T) - K, 0\},\tag{11}$$

where K > 0 is called the exercise price decided in the option. If S(T) > K, the holder of the option will receive a positive payoff amount P(S(T)) from the writer, otherwise no money will be received. Therefore, option pricing is essentially betting at time t = 0 about what will be the value P(S(T)), i.e. the random variable S(T), so that the holder and writer can deal the best option for themselves.

Suppose that now I(t) and $\sigma(t)$ are real positive constants. Consider S(0) the initial condition of the asset.

Under the no-arbitrage assumption, the fair value of the premium is given by

$$C(S_0, T) = e^{-rt} \mathbb{E}[P(S(T))]. \tag{12}$$

where r is the risk free interest rate. A closed formula for (12) is

$$C(s,t) = s\mathcal{N}(x_1) - Ke^{-rt}\mathcal{N}(x_2)$$
(13)

where

$$x_1 = \frac{\log(s/K) + (r + \frac{1}{2}\sigma^2t)}{\sigma\sqrt{T}}, \quad x_2 = \frac{\log(s/K) + (r - \frac{1}{2}\sigma^2t)}{\sigma\sqrt{T}}$$

and \mathcal{N} denotes the standard normal cumulative distribution function. Approximate (12) with the Euler-Maruyama algorithm, where I is replace by r in the dynamics (1), computing the expectation in (12) by Monte-Carlo with M=100 realizations, considering S(0)=8, K=10, r=0.05, $\sigma=0.5$ and T=1. Plot the error between the approximation and true solution at time T commenting the results. Is the result consistent with the theory?

References

[1] Steffen Dereich, Andreas Neuenkirch, and Lukasz Szpruch. "An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process". In: *Proceedings of the royal society A: mathematical, physical and engineering sciences* 468.2140 (2012), pp. 1105–1115.