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In finance, an asset is a resource with economic value that an investor owns with the expectation that it will
give a future benefit. Specifically, the price of an asset S(t) is a quantity whose current value is known, but the
future one is not. Its evolution depends on the expected rate of return I(t), i.e., the estimated profit that an
investor expects to achieve, and on the volatility σ(t), which is a measure of the risk in the market. By their
nature, I(t) and σ(t) should be nonnegative. All of these quantities can vary in time and are supposed to be
random. Therefore, one can see S, I, and σ as stochastic processes.

Let us consider the following stochastic basis (Ω,A,P; (Ft)t≥0) and assume that S(t) is described by the
following one-dimensional equation

dS(t) = I(t)S(t)dt+ σ(t)S(t)dW (t), (1)

where W is a one-dimensional Brownian-motion adapted to the filtration (Ft)t≥0. We are interested in knowing
the stochastic properties of (1) and numerically quantifying the price of an asset.

• (Q1) In order to determine the price of an asset over time, we need to solve the SDE (1).

1. Derive a closed form expression for the solution of (1) assuming constant I(t) ≡ I, σ(t) ≡ σ, with
σ, I ∈ R+.

2. Show that the process G(t) = eσW (t) is a submartingale, but not a martingale.

3. Find for which values of I S(t) in (Q1)-1 is a martingale.

4. Find the solution of (1) in closed form assuming generic I(t), σ(t).

• (Q2) Assume that the interest rate I(t) is stochastic and it is determined by some Itô differential equation.

Consider the following equation

dI(t) = (a− bI(t))dt+ cdW
(2)
t , (2)

with I(0) > 0, a, b, c > 0 and W
(2)
t a one-dimensional Brownian motion adapted to (Ft)t≥0, independent

of Wt.

1. Find a closed form expression for the solution of (2).

2. What is the distribution of I(t)? Compute the probability that I(t) < 0 with a = b = c = 1 for
t = 1, 5, 10, 15, 20. Could this behavior be a problem from the financial point of view?

3. Let us consider the following alternative interest model

dI(t) = (a− bI(t))dt+ c
√
I(t)dW

(2)
t , (3)

It is known that (3) admits a unique strong solution I. Prove that I(t) is nonnegative for all t ∈ R.
Hint: you can consider the following ausiliary process (which also have a unique strong solution)

dI(t) = (a− bI(t))dt+ c
√
(I(t) ∨ 0)dW

(2)
t , (4)

and the stopping time τϵ = inf{t : I(t) = −ε} for any ε small enough and show that P(τϵ < ∞) = 0.

4. (2) is a mean-reverting process. What does it mean? If I(0) = a
b , what can we say about E[I(t)]?

And if I(0) ̸= a
b ? Is (3) mean-reverting?

• (Q3) Let us suppose that σ =
√
v(t), where v(t) is non-negative process defined as v(t) = σ̃2(t) with

dσ̃(t) = −λσ̃(t)dt+ fdW
(3)
t , (5)

where λ, f > 0 and W
(3)
t is a one-dimensional Brownian motion adapted to (Ft)t≥0, independent of Wt

and W
(2)
t (notice that in this model σ(t) = |σ̃(t)|).
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1. Derive a closed form expression for the solution of (5).

2. The process σ̃(t) of (5) has the property of being ergodic, i.e., its distribution µt tends for t → ∞ to
an invariant measure, which we denote by µ∞ . Such limit distribution admits a probability density
function ρ∞ with respect to the Lebesgue measure on R. Derive the invariant measure of (5) and
verify that the corresponding probability density function satisfies the Fokker-Planck equation.

3. Show that the following equation holds for the square volatility process v(t) = σ̃2(t) with suitable
values of k, µ, η

dv(t) = k [µ− v(t)] dt+ η
√

v(t)dW
(3)
t , (6)

and specify k, µ, η as functions of λ and f . Briefly argument whether (6) is a good model from the
financial point of view or not.

• (Q4) Suppose to approximate (1) with I(t) = I and σ(t) = σ with the Euler-Maruyama method using
a uniform time-step ∆t, and denote by Ŝ(t) its numerical solution (continuously interpolated process) on
[0, T ].

1. Which is the order of convergence of
√
E[ sup

0≤t≤T
(S(t)− Ŝ(t))2] ?

2. Suppose now that I(t) in (1) is described by (2) and consider an approximation of I(t) by the
Euler-Maruyama method with a uniform time-step ∆t (the same as in 1.). Which is the order of

convergence of
√
E[ sup

0≤t≤T
(S(t)− Ŝ(t))2] ? Provide a rigorous argument.

Hint: To simplify your argument, you can consider the following modification of (1)

dS = φM (I(t))S(t)dt+ φM (σ(t))S(t)dWt,

where φM (x) = max{−M,min{M,x}} and M > 0 a large enough constant. Notice that φM is
bounded and Lipschitz function with Lipschitz constant 1. You might need to derive uniform bounds
on Lp norms (p ≥ 2) of the exact solution E[|S(t)|p] and numerical one E[|Ŝ(t)|p].

3. Suppose that I(t) and σ(t) in (1) are described by (2) and (5), respectively. Consider a discretization
of both of them by the Euler-Maruyama method with a uniform time-step ∆t (the same as 1.).

Which is the order of convergence of
√

E[ sup
0≤t≤T

(S(t)− Ŝ(t))2] ? Which is the order of convergence

of the Euler-Maruyama method applied to I(t) and σ(t) ? Provide rigorous arguments.

4. Let us assume that a = 0.1, b = c = 0.5, d = f = 1. Consider T = 2, and simulate the Brownian

motion Wt,W
(2)
t ,W

(3)
t with a uniform time-step dt = 10−5 (i.e. 200001 points) and M = 100 paths.

Moreover, assume S(0) = 2, I(0) = 0.5, and σ(0) = 2 for all paths. Compute the solution S(t) of (1)
with interest rate I(t) and σ(t) defined by the closed formulae obtained in (Q3)-1. and (Q4)-1 (you
can approximate the integrals present therein with a left point quadrature formula as in the Euler

method, and using the generated paths of Wt,W
(2)
t ,W

(3)
t ), and their Euler-Maruyama approximation

for uniform ∆t = 5 · 10−4, 10−3, 4 · 10−3, 8 · 10−3, 10−2. Plot the error

√
E[(S(T )− Ŝ(T ))2] (you can

estimate the expectation with a Monte-Carlo procedure). What order do you observe? Is it consistent
with your conclusions of the previous points?

(If your machine does not sustain computations with these time-steps, you can change them accord-
ingly.)

• (Q5) Assume that in (1), I(t) = I and σ(t) = σ are real constants, and also assume S(0) = 2. Consider
T = 5 and M = 1000 paths.

1. Show that

lim
t→+∞

1

t
log(S(t)) = I − σ2

2
, a.s. if I ̸= σ2

2
(7)

and

lim sup
t→+∞

log(S(t)√
2t log log t

= σ and lim inf
t→+∞

log(S(t)√
2t log log t

= −σ, a.s. if I =
σ2

2
(8)

Deduce a condition of mean-square stability of the price S, i.e. lim
t→+∞

E[|St|2] = 0.
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2. Assume σ = 0.12. For ∆t = 0.01, 0.02, 0.05, 0.1, plot E[|S(t)|2] for the interest rates I = 0.002, 0.006,
0.0072, 0.012, 0.024 (you can approximate it with a forward Euler method) and comment the results.
Is this performance a good asset behavior? Comment.

3. Suppose to apply the stochastic-θ method to (1), denoting its solution by (Sθ
n)n. Discuss the mean-

square stability of the stochastic-θ method applied to (1), i.e. lim
n

E[|Sθ
n|2] = 0, and derive sufficient

conditions of mean-square stability for θ = 0, 1
2 , 1. Verify numerically the conditions for θ = 0, 1

2 , 1,
with the data of (Q5)-2.

4. Assume now that σ(t) is no more constant and satisfies equation (5), in (Q3). Consider an approx-
imation of σ(t) by the Euler-Maruyama method, denoting its solution by (σn)n. Find a condition
on ∆t so that there exists a constant M > 0 such that E[|σn|2] ≤ M for all n. Do we have
mean-square stability of (σn)n under such condition on ∆t? Verify these properties numerically for
f = 0.2, λ = 0.1, T = 5, and σ0 = 1.

• (Q6) Suppose to have a basket of options, i.e. a collection of multiple financial securities, composed only
by assets whose prices are described by the following system of SDEs

dS(t) = IS(t)dt+ σK(S(t) ◦ dWt), (9)

where, S(t, ω) ∈ Rn fixed ω ∈ Ω, (S(t) ◦ dWt) denote the Hadamard product between S(t) and dWt, i.e.
A ◦ B = [aijbij ]ij for A,B ∈ Rm,n, K ∈ Rn×n is a symmetric positive definite matrix, I is a symmetric
positive definite matrix, σ is a nonnegative constants and W is a n-dimensional Brownian motion adapted
to (Ft)t≥0.

1. Derive an equation for G(t) := E[S(t)S(t)⊤].
2. Assume T = 1, I = 0.01 · Id×d, K = RR⊤, with R a matrix whose entries are sampled from a

Unif(0, 1) r.v., and σ = 10−3.

Approximate (9) with a Euler-Maruyama method. Denote (Sn)n the approximate solution and com-
pute the approximate matrix (E[SnS

⊤
n ])n at discrete times tn = n∆t, approximating the expectation

E with a Monte-Carlo method Ê. Compute the error√√√√ N∑
n=0

∥Ê[SnS⊤
n ]−G(tn)∥2F∆t (10)

for ∆t = 0.001, 0.01, 0.05, 0.1, M = 100, d = 5. Which are the sources of errors in computing (10)?
Repeat the same computatations but with M = 2000 and comment the results.

• (Q7) Consider equation (6). Let k = 1, µ = 1, v(0) = 1 for all the M = 500 paths.

1. In [1], a Euler-type method based on the Lamperti transformation Yt =
√
vt is proposed, obtaining

the accuracy result of Theorem 1.1 therein. Derive the same discretization scheme for (6) and show
with a simulation that Theorem 1.1 holds, fixing η = 0.5, 1.5, 1.75. Compare the convergence rate
with the one of the Stochastic θ-method with θ = 1 applied to the same problem (you can compute
the true solution using [1] and a very fine mesh (at least ∆t ≈ 10−5)). Comment the results.

2. Why can’t we use the formula obtained in (Q3)-1 in point (Q7)-1?

• (Q8) The theory of asset pricing is the standard tool in the evaluation of options. An option is a contract
between two parties, a “writer” and a “holder”. Both sides agree that a fixed time t = T , called the expire
date, the writer will pay an amount of money to the holder, called the payoff, whereas the contract is
assumed to be stipulated at time t = 0. The value of the payoff is determined by the behavior of the price
S(t) of the chosen asset in the interval of time [0, T ]. On the other hand, the holder does have to pay a
small amount, called “premium”, to the writer at time t = 0 by contract. For example, let us consider a
“European call” option, which is defined by the following payoff function

P (S(T )) = max{S(T )−K, 0}, (11)

where K > 0 is called the exercise price decided in the option. If S(T ) > K, the holder of the option will
receive a positive payoff amount P (S(T )) from the writer, otherwise no money will be received. Therefore,
option pricing is essentially betting at time t = 0 about what will be the value P (S(T )), i.e. the random
variable S(T ), so that the holder and writer can deal the best option for themselves.
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Suppose that now I(t) and σ(t) are real positive constants. Consider S(0) the initial condition of the
asset.

Under the no-arbitrage assumption, the fair value of the premium is given by

C(S0, T ) = e−rtE[P (S(T ))]. (12)

where r is the risk free interest rate. A closed formula for (12) is

C(s, t) = sN (x1)−Ke−rtN (x2) (13)

where

x1 =
log(s/K) + (r + 1

2σ
2t)

σ
√
T

, x2 =
log(s/K) + (r − 1

2σ
2t)

σ
√
T

and N denotes the standard normal cumulative distribution function. Approximate (12) with the Euler-
Maruyama algorithm, where I is replace by r in the dynamics (1), computing the expectation in (12) by
Monte-Carlo with M = 100 realizations, considering S(0) = 8, K = 10, r = 0.05, σ = 0.5 and T = 1. Plot
the error between the approximation and true solution at time T commenting the results. Is the result
consistent with the theory?

References

[1] Steffen Dereich, Andreas Neuenkirch, and Lukasz Szpruch. “An Euler-type method for the strong approx-
imation of the Cox–Ingersoll–Ross process”. In: Proceedings of the royal society A: mathematical, physical
and engineering sciences 468.2140 (2012), pp. 1105–1115.

4


