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Exercise 1.

Let {W,}; be an m-dimensional Brownian motion. We recall the definitions

tnir S trni1 s ru .
I,(k1) = / / dWkawl, 1I,(k,1,j5) = / / / AWEAWLAWY,
t, th tn tn Yin

with the convention W) =t (hence dW; = dt). Show that
1) 1,(0,0) = - A2,
2) I,(0,k) = AtAWE —1,,(k,0)

3) L(k,0) = AHAWS + %zk) with Z* ~ N (0, At) independent of AWF.

4) I(k b, k) = = (2 (AWE)2 — A AW

Solution

1) 1,(0,0) = [ [* duds = [ (s —t,)ds = %Atz,

2) Notice that

tn+1 s t7l+1
In(lao):/ / dW]fds:/ (Wk—WE)ds
ty 129 ty
trni1 (11)
= / Wkds — W[ At
t

n

Therefore, one has
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= AtAW} — Whds + Wk At

tﬂ,

= ALAWF — I,,(k, 0).



3) We have

(1, (k, 0)) —E([M [ dezdsl) - [nE(/t dez)dsl —0,

E(AW, I, (k,0)) = / " BAW, (WK — W (t,))ds, — / " s t)dsy —

n n

and
(At)?
5

Then, by It6 isometry we get

E(1,(0, k)°) :E((/tmlsldel) ) - /tnl(s_tnydsl _ <A;>3.

n

Moreover, due to I,,(0, k) = AtAW,, — I,,(k,0) we have

E(1,(0,k)AW,,) = AtE(AW?) — E(AW,,I,,(k,0)) = (At)? — =
Therefore, we obtain
E(I,(k,0)%) = E((AtAW,, — 1,,(0, k))?) = (At)*E(AW2) + E(I, (0, k;)z) — 2AtE(I,(0, k) AW,)

= (At)’ + (ATt (A3t>3.

Consider now the joint process (AW, I, (k,0)), which is distributed as a bivariate Gaussian with zero

mean and covariance matrix
5 ( At (At)2/2>

F_ (At)? =

(At)*/2 (At)*/3

In order to find the thesis, we want to compute the Cholesky factor of the covariance X, i.e., the lower
triangular matrix L such that ¥ = LLT, and then the joint process (AW, I,,(k,0)) as

(ﬁ%) - L@)

where V;,V, ~ N(0,1) are two independent random variables, so that expliciting I, (k, 0) will give us
the wanted expression. It is possible to show that L is given by

I_ (A1) 0,

\(AnP2/2 V3(A32 /6 )
(AW)_L<V1>_ R AU
L(k,0)) — “\Va) (A2 (Vi + =Va) )

1 | 1
(At) (ALY + ﬁ(m) 12V,) = §At(AW,’§ + %Zk)

which yields

Therefore

DN —

I,(k,0) =

with Z* ~ N(0, At) independent of AW},
4) We set Wk = Wk — Wtkn for s € [t,,,t,,+1]- Notice that AWk = dWk. We first have

tnia S1 S22 ~ -
Lk ko k) = / / / AWk AWk dik
t’llr tn t’ﬂ

tn+1 S1 ~ ~ ~
— /t [ Wh AWk awh (1.3)

n
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Applying the stochastic integration by parts we obtain

1 [ZES . tn1
g 0= [ vy [ ks, (14)
t t

n n

which can be written in the differential form as
%d(ﬁff)f” — (WFRdIWE + Whds, (1.5)

Finally, by previous computations we get

tn+1 ~ tn+1 ~
/ (5 t,)dIVE = ALAWE — / Tk ds. (1.6)
by by
Putting all together one finds that I,,(k,k, k) = %((AW,?)Q — 3At) AWk, which is equivalent to the

thesis.

Exercise 2.

Let Wy,...,W,, be m independent one-dimensional Brownian motions in [0,7]. Consider a uniform
partition P = {0 =t, < t; < ... <ty =T} of size At. We recall that

thy1 51 Sp-1 i i

. . e ‘P 1

L, (i, .o i) = / / / dWs, ... dWs;
tn tTL tn

where for dWsij = 0if 4; = 0 For example, we have

tni1 S1 S2
1,(1,2,0) = / / / AW, dW2 ds;.
thn tn, Yt

Show that:
i) E[L,(ip, ..., 11)] = 0 if there exists je{1,..,p} such that iz # 0.
i) E[L,(ip, ..., 11)] = O((At)?) if i; = 0 for all j € {1,...,p}.

Hint. Use the Cauchy formula for repeated integration.
iii) E[I2(i, ..., i1)]% = O((At)?) where g = SF  2mintlis)

P =17 3
Hint. Prove it by induction. _
i0) B[|L,(ips .. i1)[] = O((A1)7) where g = 7 2*%“}

Solution
The first point is trivial, since for any G € M?(0,T)

E( " Gaws )=0.

t

n

The second point is a standard result (Cauchy formula for iterated integral). The third point is proved by
induction on p. For p = 1, we have the two following possible cases

E(([M ds,)’) = (A1) E(([M awit)’) :E([W dsy) = A,

n n n



and therefore the assertion holds. Assume now the assertion iii) to be true for p —1 and consider I,,(i,, ..., i),

lpy1 pS1 Sp-1 i . tn1 ;
In(ip,...,il):/ / / AW . dwi :/ L (i, oo i) [s1)AWEE,
t’n/ t'VL t’n/ t

n

where we denoted

Lo (iys o is)[s1] = [

n

Sp—1 i .
/ dWs? ... dWe,
L

which by the induction assumption satisfies E(I7 (i, ... is)[s1]) = O((s; —t,)7) = O((At)*7), where

P 2 —min{1,4;}
po3 ),

Jj=2

There are two cases: First, if i; = 0, by the Cauchy—Schwarz inequality and the induction hypothesis we have

E(12(iy, ... 1)) = E(["H L (i, .. ,z‘z)[sl}dsl>2

n

tnAl
< / ]E[In(lp7,lg)[31]]2dslAt
t

thni1
< [ Bl iy it s A
t
< O(A)2 (A2

Second, if i; € {1,...m}, we use the It6 isometry

tni1 2 tntr
B iy sit) = B(( [ iy ilsdWy (50)) ) = [ ER (i i)l
tn tn
tn+1
<o [ ds = cranre,
t

n

which verifies the claim. Therefore E(I2(iy, ... ,41)) = O((At)??), where

2 +2 ifi; =0,
2¢*+1 ifi; € {1,...,m}
=2¢* +2—min{l,4;}
P
= > (2—min{1,i;}).
j=1
Therefore, the induction step is completed and the result is proved.
Last point follows easily by applying Cauchy-Schwarz inequality and using point 7).

Exercise 3.

The aim of this exercise is to derive a method of strong order 3/2 for an autonomous one-dimensional
SDE of the form
dX(t) = f(X(1))dt + g(X(1))dW (t).



Let us first define the following It6 integrals with the notation of Exercise 3

trni1 tni1
In(o) = / d817 In(1> = / dW(‘Sl)?

tn tn
thi1  pS1 tnt1  pS1

IR(O,O) = / / dSQdSl, I,,.L(O, 1) = / / dWSzdsl,
tn tn tn t,
tri1 S1 tni1

In(1,o)=/ / dsyd1V,., In(l,l):/ / A, dw, ,
ty tn ty tn

thi1  ps1
In(171,1):/ / / Aw, dw, dw, ,
t, t, Yt

In the following, we denote by £, f/, f” and g, ¢/, g” the values £(X(£,)), f(X (£,)), £ (X(t,)) and g(X(£,), g/ (X (t,)), " (X (t,)
respectively. Moreover, we define

e = / " (X (sy))dsy — fA,

n

tri1
e = / (X (s1)dW,, — gAW,.
t

n

i) Show that
= F'T,(0,1) + (Ff + 36 )T, (0,0)
+0(1,(0,1,0)) + O(I,(0,1,1)) + O(1,,(0,0,0)) + O(I,,(0,0,1)).
i) Show that
es = (fg' + %gQg”)In(l,O) +99'1,(1,1) + g(g9” + (¢')*) I, (1,1,1)
+0(I,(1,0,0)) + O(1,,(1,0,1)) + O(I,,(1,1,0)) + O(I,,(1,1,1,0)) + O(I,,(1,1,1,1)).

Then, a possible proposal for a method of strong order 3/2 is given by

1
Vi = Yo+ AL+ AW, + £/91,(0,1) + £+ 5427 ) 1,(0.0)

(3.1)
/ 1 V4 / " /
+ (fg +59°9 )In(l,O) +99'T,(1,1) + 9(99” + (¢')*)1,(1, 1, 1).
117) Using the results of Exercise 1, write explicitly the method (3.1).
Solution
i) Applying Itd formula to f(X(s;)) we get
t
i 4 1 4
er= [ XX (52)) + 58 (X(2)g? (X(52)))dsadsy
tn t"L (3.2)

+/tnn+1 /t:1 f/(X(52)>9(X(52))dws2d51_

Applying Itd formula again to the integrands and keeping only the terms in s, = ¢t,, explicitly, we have

e = / / (FF + 2g2 " )dsdsy + / / FgdW, ds,

O(1,,(0,1,0)) + O(I,(0,1,1)) + O(I,,(0,0,0)) + O(I,,(0,0,1)).

which is the desired result. Notice that triple integrals are all of order (At)? or higher.



i1) Applying Itd formula to g(X(s;)) we get
tht1 51 , 1, )
= [ [ 52D I (X)) + 5 (X(52)) (X (5) )W,

/ tmln s
+ / / g/ (X (52))g(X(52)) AW, AWV, .
t’!‘L tn

Applying It6 formula again to the integrands we obtain

tri1 S7 n+1
€5 :/ / fg += g2g” )dsodW, —I—/ / g gdW,, dW,,
/ / / (9(X (39))g" (X(s3)) + &' (X (55))?)dW, AW, dWV,,

0(,(1,1,0)) +0(,(1,0,1)) + O(1,(1,0,0)),

(3.3)

where the integrand in the triple It integral is of order (At)3/ 2 and is kept explicitly. Applying Ito

formula once more to this term, we get

thi1  ps1 n+1
e = / / (fof + 2a0" sy dW,, + / / o gdW,, W,

/ ' / / g(gg” + (g)?) AW, AW, dW,,

o(I,(1,1,0)) +0(1,(1,0,1)) + O(1,(1,0,0)) + O(1,

which is the desired result. Notice that all the triple and quadruple integrals are of order (At)
higher, except of the term in I,,(1,1,1) which is kept in the scheme (3.1) and is of order (At)3/2,

2(1,1,1,0)) + O(I,(1,1,1,1)),

#17) The method reads
1
Y1 =Y, + fAt+ gAW + §gg’((AW)2 — At)

1987+ 5 (1 + 508 ) (A0
+ (fg + ;929”>(AtAW — AZ)

+59lag” + (g (5(aW)? - At) aw.

Exercise 4.
Let a € R and consider the SDE on [0, T

dX(t) = —%a2X(t) + a1 = X(0)2dW(0), (4.1)

with initial condition X (0) = X,.
i) Verify that the It6 solution of equation (4.1) is given by
X(t) = sin(aW (t) + arcsin(X,)).

i) Write the Milstein scheme for equation (4.1) and the corresponding derivative-free schemes with

supporting values
= X+ f(t, Xp) At + g(t,, X))V, 42)

Z
Z, =X, + g(t,, X, VAL



17) Implement the schemes above and verify that they all have strong order of convergence 1. Set a = 0.5,
Xy =0, T =1. Choose different step sizes At = 27" with ¢ = 2,...,8 and approximate the expectations
using M = 10* realizations of the Brownian motion. What difference do you notice between the three
schemes?

iv) Repeat the previous point for the strong order 1.5 scheme of Exercise 4.

Solution

i) We apply the Itd’s formula to X (t).

1) The Milstein scheme is given by

X1 =X, — %aQXnAt +ay/1— X2AW, — %a%/l — X,%%((AWTJ2 — At)

=X, — ; a?X, At + a\/1 — X2AW,, — ;a2Xn((AWn)2 — At) (4.3)
=X, +ay1—X2AW, — ECLQXn(AVVn)2

The supporting values are

7. =X, %cﬂxnm +ay/I= X2VAL
Z, =X, +ay/1— X2VAt.

We then replace them in the definition of the derivative-free Milstein scheme

(4.4)

_ L, a 2
Xpi1 =X, = 50°X, At +a/T- X3 ﬁt(m — 722 = V1= X2)((AW,)2 — At).  (4.5)

117) The plot given in Figure 1 shows that the convergence rate is maintained in both the derivative free
versions. Nonetheless, the constant is slightly smaller for the original version. Errors with the supporting
value Z and Z are approximately the same, even though for A they are slightly lower.

iv) Considering the previous exercise, we have the following values

1 ar 1
/ =2 ” _ / - ” -
f (LL‘) - 2a 9 f (‘T> 07 g (.’E) ma g (‘T> (171.2)3/2'

This implies that

1 1 1 1
f'g= —§a2a\/1 —a2 = —§a3v1 — 2, (ff/ + 592f”) = —alz

4
1 adz? 1 a
/+_2//>: +2a?(l—22) ————— —
_1l de? 1 d
2V1—a2 2122
1a®(1—a?) 14
_ e =) 3./ _ .2
5 — 2(1 1— a2
1 a ax
= - — 2 —x2.— - 2
2g(gg +(9)?) 2a\/l x (a\/l x 1= 227 ( m))
1

EN|
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Figure 1: Order of convergence of the Milstein scheme, its derivative-free schemes and the method of Exercise
3.

Therefore, our method will turn out to be
Xpy1 =X, + fAL+ gAW + %gg’((AW)2 — At)

1982+ 5+ 50F ) (At
+ (fg’ + %gQQ”) (AtAW — AZ)
+59log” + (o)) (5(AW)? - At) AW,

=X, + fAt + gAW + %gg’((AW)Q — At) + %a4Xn(At)2
+ (—%Cﬁm) (AZ +ALAW — AZ + (%(AW)Q _ At) AW)

— X, - %aQXnAt +ay/T—XZAW — %aQXn((AW)Q — AN+ éa4Xn(At)2
+ (—%a«%m) (AZ +ALAW — AZ + (%(AW)Q _ At) Aw)

— X, +a/I= XZAW — %azXn(AWV + %a‘*Xn(At)? + (—%ai’»m _ X%) (%(AW)B).

Exercise 5.
Consider the SDE on [0, 1]

AX(f) = —5 X(1)dt + X(H)AW, (1) + X ()W, (1),
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Figure 2: Order of convergence of the Milstein—Platen scheme of Exercise 7.

with initial condition X (0) = 1. Does this problem have commutative noise? Give the exact solution and
compute the numerical solution employing the Milstein—Platen scheme. Verify that it has strong order of
convergence 1. Choose different step sizes At = 277 with 4 = 2,...,8 and approximate the expectations using
M = 10* realizations of the Brownian motion.

Solution
The noise is linear and therefore commutative. In order to compute the exact solution we define

~ 1
Wt) = "

which is a Brownian motion. Hence, we can rewrite the equation as

(W1 (t) + Ws(t)),

dX(t) = —%X(t)dt VX (1A (1),

whose exact solution is . B .
X(t) = €7§t+\/§W(t) — oW Wa(t)

The Milstein—Platen scheme for this problem is given by
1 n n n n n n
Ky =X [1 —gh I+ 1y TG+ I o)+ () + I(mﬂ]’

where I}, = AW, I3 = AWy, Ifqy = (A, W1)? —h)/2, 150y = (A, W5)? — h)/2 and I o)+ 150 =
A WA, W,. The plot is then given in Figure 2 and shows that the strong order of convergence is 1.
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