Numerical Integration of Stochastic Differential Equations E PFL
Week 2024-11-04 to 2024-11-08 Prof. Fabio Nobile

Series 7 - November 6, 2024

Exercise 1.
Consider the following SDE

dX, = pX,dt + o X, dW(t), te[0,T]

X(0) = X, (1.1)

with X(0) € R, u € R, ¢ > 0. Equation (1.1) admits a unique closed-form solution and it is called Geometric
Brownian motion.

1) Find the closed form solution for (1.1).

2) Consider X(0) =1, =2, 0 =1, and T = 1. Compute the Euler-Maruyama discretization {X,,}\_,
of (1.1) for At = I_ 0.1,0.05,0.01,0.005,0.001 and for a single realization plot sup,_, _ [X:, — X,
1
versus (At)z.
3) Compute Zy = SUDy e N ‘Xt"i)f"l for At =T /N with N =100 and M = 1000 independent trajectories
S (At)2

and plot the empirical CDF(Zy). Do the same computation for N = 1000; does CDF(Zy) converge to
a limit distribution ?

: a ‘th_Xn‘ 1 . . .

4) What happens if you take Z§ = sup0<n<NW for a < 5? Is this result consistent with your

expectations 7

Solution
1) Formally, the equation gives
dX
Hence, applying the 1td formula to u(z) = log(x), we obtain
_dX 1 50, 1,

Therefore, we have
t t
log(X (t)) = log(X,) +/ (u — %02>ds +/ odW (s),
0 0

which implies
X(t) _ XOS(M7;U2)t+UW(t>.
Finally, we verify rigorously that X (¢) is a strong solution of the SDE, indeed we know that:

i) t— X(t) is continuous,

i) X(t) is F(t)-adapted,

i) (t,w) > pX(t,w) is in M*(0,T) and (¢t,w) - o X (¢,w) is in M2(0,7T),
)

1) the equation holds a.s. for each t.

Since f and g are continuous then i) is verified because the mappings are progressively measurable.
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Figure 2: Histogram of the error for M = 1000 trajectories for N = 100 and N = 1000.

Exercise 2.
Consider the 1D autonomous SDE

X(0) =nelLl*), '
and the stochastic #-method
X1 =X, +0A(X,, 1) + (1 —0)Ath(X,,) + o(X,,) AW, (2.2)

Assume b, o to satisfy a global Lipschitz condition and a linear growth bound and, moreover, b is continuously
differentiable with bounded derivative |b’(x)| < K for all z € R.

1) Show that if At < % the numerical solution is well defined (uniquely exists)
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Figure 3: Sup Error computed over time with respect to one trajectory vs (At)%, a = 0.2.
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Figure 4: Histogram of the error for M = 1000 trajectories for N = 100 (left) and N = 1000 (right).

Hint. You can show that the map p(z) = 0b(x)At + v, v = X,, + (1 — 0)b(X,,) At 4+ o(X,,) AW, is
contractive

2) Show that 3C >0 : sup E[X,]?)]<C
o<n<N
Hint. multiply (2.2) by X,, and use the identity (X, ; — X,,)X,, = %X,%H — %X,% — %(Xn+1 —X,)?

3) Defining the (non adapted) process

X=X+ (06(X 1) + (1= 0)b(X,))(5 = ) + 0 (X)) (W, = W)

= Xt [ O+ (0= X+ [ o)Wt <5 <t 23)

n n

Redo the same steps of the proof of the strong convergence of Euler-Maruyama to show that E[ sup |X,—
0<t<T

X, 2] < oAt

Solution



1)

Considering ¢(z) = 0b(x)At + v, v = X,, + (1 — 0)b(X,,) At + 0(X,,) AW,,, we have
lp(x) — @(y)| < 0AL[b(z) — b(y)|
< K0At|z —y (2.4)
< |z —yl

where in the last line we use the condition At < % . Therefore, under this condition, ¢ is a contractive
map and, via the Banach theorem, there exists a unique fixed point y of ¢, i.e. y = (y). Setting
X, 41 =y we are done.

We have

1 1 1
§X’I’2L+1 - 5X721 - E(Xn+1 - Xn)2 :<Xn+1 - Xn)Xn

=0Ath(X,11)X,, + (1 —0)Ath(X,,) X, + o(X,,) AW, X,
SOALK|X, .1 — X, || X, | + Ath(X,)X,, + o(X,) AW, X, (25
= X2 <XZ+ (X1 — X,)? + AWK|X,,  — X, |> + AtIK | X, |?
+2Ath(X,,) X, + 20(X,,) AW, X,
Moreover,
| X1 — X, | SOALD(X,, 1) — b(X,)| + Atb(X,)| + |o(X,,) AW, (2.6)
and, therefore, using the Lipschitz continuity

1
1—-0AK
2
(1— 0ALK)?

[ X1 — Xn| < (ALB(X)[ + [0 (X)) AW, )

) (2.7)

_ 2 ¢ 2 2 2
= |Xn+1 an = (At) ‘b(Xn)| + (1 —9AtK)2|O(X”>AW”|

Taking expectation we get

2(1 + OALK)

(1— 0tAK)2

+ QAtKE[X2] + 2AtE[X,,b(X,,)]

2(1+ 0AtK)((A8)? + At)  2(1 + 0ALK)((At)? + At)
(1—0tAK)? (1—0tAK)?

+ OALKE[X2] + 2AtE[X2] + 2AtK (1 + E[X2])

e 2(1 + OALK) ((At) +1)

= ElXl0+ ( (1= 0tAK)?

2(1 4 0ALK)((At) + 1)

+2K< 1= GIAR)? +2K>At

where in the second line we use the linear-growth bound and the Young’s inequality. For all € > 0 small

2(1 4 0ALK)

E[X7,.] < E[X7) + 2E[b(X,,)%] (1 —0AIK)?

(At)? + E[(0(X,,)AW,,)?]

< E[X2] + 2E[X2] K

+9+2+2K>At

enough, having At < % — e guarantees to find explicit positive constant C', D > 0 such that

E[X2,,] < E[X2](1 + CAt) + DAL (2.9)
Now, we prove by induction that for all n it holds:
E[X2] < (E[X?] + DnAt) exp{CnAt}. (2.10)
Obviously, (2.10) holds for n = 0. Now, suppose that (2.10) is valid for n, then from (2.9)
E[X2.,] <E[X2](1+ CAt) + DAt
< (E[XE] + DnAt) exp{CnAt}(1 + CAt) + DAt (2.11)
< (E[X3] + DnAt) exp{CnAt} exp{C At} + (E[XZ] + DnAt) exp{CnAt} exp{C At}
< (E[XE] + D(n + 1)At) exp{C(n + 1) At}.



Then, for all n one has

E[X2] < (E[X3] + DT) exp{CT}. (2.12)

Alternately to induction, one could also have explored some discrete Gronwall lemma inequality.

3) We defined the inteporlated process starting from the numerical one as done in the Euler-Maruyama
convergence proof.

Xpp1 =X, + eAtb(Xn-H) +(1— G)Atb(Xn) + o(X,) AW,
Xt :Xn + 9b<Xn+1)(t - tn) + (1 - a)b(Xn>(t - tn)7 th <1< tn+1 (213)
+o(X) (W =W, ), t=t,+1

Moreover, let us denote n, = max{n : t, < s} and ¢, = t, . Then one has the following splitting
X, - X,

X, - X, = /t b(X,) — [(1—0)b(X, 1) +0b(X, )]ds + /t o(X,) —o(X, )dW,
0 0

- /t b(X,) — b(X,, )ds + /t o(X,) —o(X,, )dW, (2.14)
0 0

t

b(X,. ) — [(1—0)b(X,, 1) +6b(X, )]ds+ /t o(X,.) —o(X, )dW,

_l’_
S—

Passing to the sup and apply the average we get

IE{ sup |Xt )A(tﬂ < =4E [ sup

0<t<T

2
1 +4Elsup

0<t<T]

T

/t o(X,) — (X, )dW,
0

/ (X)) — b(X, )ds
0

0<t<T]

‘ 2
+ 4El sup / b(Xy,) — [(1—0)b(X, 1) +0b(X, )]ds ]
0<t<TlJp
¢ 2
+4E[ sup / o(X,.) — o(X, )dW, 1
0<t<T|Jg

(2.15)

The elements that appears also in the Euler-Maruyama proof are treated in the same way. Instead, for
the only different one we have thanks to the standard assumption and point 2) that

t 2
El sup / b(X, ) — [(1—0)b(X, 1)+ 6b(X, )]ds 1
0<t<T|Jg
i . )
<E| sup / b(X,. ) —b(X, )+ 0b(X, ) —b(X, 41)ds ]
| 0<t<T|Jo ) i i
r t
<&l 7 2|b(X¢S)—b(Xn5)|2+02|b(an)—b(Xn5+1)|2ds]
LO<t<T 0
r t
<E| sup T/ 2b(X,.) —b(X, )|* + 602K|X,, an+1|2ds}
LO<t<T 0
T
:T/ E[ sup 2b(X,,,) — b(X,)|* + 02K[0Ab(X,,) + (1 — 0)Ath(X,, 1) + (X, ) AW, [*|dr
0 0<s<r
T
< T/ QKE{ sup | X, — an|2 + 02K2(1 + C)((At)? + At)]ds
0

0<s<r

(2.16)

and then conclusion follows similarly to the Euler-Maruyama proof of convergence.



Exercise 3.
Let b> 0, 0 € R and X; € R and consider the Langevin equation

dX(t) = —-bX(t)dt + odW (t), t€][0,T], (3.1)
Remark. The solution X (¢) is also called the Ornstein—Uhlenbeck process.

i) Solve equation (3.1).

it) Verify that lim, . E[X(¢)] = 0 and lim,_, . Var(X(¢)) = ;—Z and the distribution of the limit random
variable X (co) is V(0, ;—j)

Remark. The limit distribution is still NV (0, ;—Z) if X is a Gaussian random variable independent of the

Brownian motion.
The stochastic #-method applied to the SDE
dX(t) = f(t, X ()dt + g(t, X ()dW (1),
X(()) = XO)
is defined for 6 € [0, 1] and a partition P = {0 =t5 < t; < ... <ty =T} of size At as
For a given € > 0, set T' =1, 0 = \/2/¢, b = 1/e and Xy = 1 and apply the #-method to approximate the
solution X (t) of (3.1).

iit) Set e = 1/20. Approximate the solution of equation (3.1) employing the #-method with § = 0,1/2,1
and uniform partitions P, = {0 =t; <t; < .. <ty =1} with N), = 2" and k = 2,4,6. Verify that the
f-method with 6 = 0 is unstable for large values of At.

) Consider a uniform partition P = {0 =ty < t; < ... < ty = 1} with N = 25. For e = 1/20,1/40,1/60
approximate the probability density function f of X, employing the 8-method with § = 0,1/2,1. Verify

0.2
that the 6-method with § = 1/2 is the only one which preserves the limit distribution N(0, 2_b)

Hint. In order to approximate the density function f of X, make a histogram of Xy for M = 10*
independent sample paths and normalize it so that ﬁ% fdz =1.

Solution
‘We have

t
X(t) = Xpe ¥ + cr/ e =AW ().
0

Let us prove ii) in the case of the remark. Using It6 integral property we have E(X(t)) = e "E(X,) and
clearly lim,_, .  E(X(¢)) = 0. Now, using the independence of X, and W, we compute

E(X()?) = e 2E(X3) + 20e "' E(X,)E( / t e Pt=dAW (s)) + o?E(( / t et t=51dW (s))?).
0 0

It6 integral property gives E( j; e’b(t’”dW(s)) = 0 and It6 isometry implies

¢ ¢
E((/ e‘b<t_s)dW(s))2> = / e~ 2b(t=s)dg = %(1 — e ),
0 )
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Figure 5: Approximation of the solution of equation (3.1) in Exercise 6 employing the #-method for different
values of 6 and At.

Hence, we have

Var(X () = E(X(t)?) —E(X(t))? = e "' E(X2) + ;—Z(l — e 2bt) g

2
As an L? limit of a Gaussian process, the distribution of the limit random variable X, is N(0, %)
The plots are given in Figures 5 and 6.

Exercise 4.
Consider the SDE
AX(t) = AX(O)dt + X (H)dW (1), (4.1)

with initial condition X (0) = X, and where W is a one-dimensional Brownian motion. Show that the fully
implicit method
Xpi1 = Xp £ AX 0 AL+ p X, AW,

has unbounded first moments, i.e., E[|X,,|] = +oo for all n.
Solution
Notice that 1
Xpiy = ———— X

1—Ah—pAW, =™
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Figure 6: Approximation of the limit distribution employing the #-method for different values of 6 and e.

and define Z,, = 1/Y,, with Y,, = 1 — Ah — uAW,, ~ N(m, 0?) where m = 1 — Ah and 02 = p?h. The sequence
{Z,}>2, is independent, hence we have

E|X, 1| = E|Z, |E|X,| = E[Xo| [] EIZ,/.
k=1

We now show that E|Z,,| = co. Set h(z) = 1/z and note that its density function satisfies

F2, () = Fo, (D) = Fy, (1/2) 5.

Therefore, for any § > 0 we have

ElZ 1 1 _ (1/2—m)2 dr > 1 0 1 _ (1/2—m)2 d
= — zZl—=e 202 dz Z2 —— —e 202 dz,
12| \/27T0'/R| |22 \/271'0/5 |2

and choosing & such that (1/z —m)? < 2m? for |z| > § we deduce

1 m2 OO
E|Z,| > —e_ﬁ/ —dz = o0.
)

Exercise 5.



Show that the stochastic Heun method

1 — 1 =
Yn+1 = Yvn + §<b(antn) + b(Y'mtn))At + i(a(ifmtn) + U(antn))AWn

Y, =Y, +b(Y,, t,) Al + 0 (Y, t,) AW,
with fixed time step At, i.e. t,, = nAt for all n, is not consistent when applied to the SDE d X, = 2X,dW,,
t > O7 X(] - 1
Hint: show that E[X;] =1, Vt, whereas E[Y,,]-41 as At — 0.

Solution

Consider the SDE
dX(t) =2X(t)dW(t), t >0, X(0)=1,

which we may write in integral form as

By the martingale property of the It6 integral we obtain
t
EX(t)]) =1+ E[/ 2X(s)dW(s)] =140=1 forallt>0. (17.5)
0

The stochastic Heun method here is

Y, =Y, + %AWn[QYn +2(Y, + 2AW,)Y,)] = Y, [1 + 2AW,, + 2(AW,,)?].
Hence .
Y, =[] (1424w, +2(AaW))?).
j=0

Since the factors are independent, on taking expectations we have

]E[Yn} = ﬁ ]E[l + 2AWj + 2(AWj)2] = ﬁ(l +2At) = (1 4+ 2A¢)™. (17.6)
Jj=0 j=0

If we consider the limit At — 0 for fixed ¢,, = nAt, then
E[Y,,] = e*» + O(At). (17.7)

So the stochastic Heun method does not converge weakly (and also not strongly) for this simple example.
Therefore, the method is not consistent.
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