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Exercise 1.

1) Show that the following nonlinear SDE

𝑑𝑋𝑡 = 𝑑𝑡 + 2√𝑋𝑡𝑑𝑊𝑡 (1.1)

has solution 𝑋𝑡 = (𝑊𝑡 + √𝑋0)2 for 𝑡 ⩽ 𝜏 = inf{𝑡 > 0 ∶ 𝑊𝑡 < −√𝑋0}.

2) Show that the following nonlinear SDE

𝑑𝑋𝑡 = (√1 + 𝑋2
𝑡 + 1

2𝑋𝑡)𝑑𝑡 + √1 + 𝑋2
𝑡 𝑑𝑊𝑡 (1.2)

has solution 𝑋(𝑡) = sinh(arcsinh(𝑋0) + 𝑡 + 𝑊𝑡).

Solution

1) We consider the candidate solution 𝑋̂𝑡 = (𝑊𝑡 + √𝑋0)2 and apply Itô lemma to 𝑋𝑡. Calling 𝑓(𝑡, 𝑥) =
(𝑥 + √𝑋0)2, one gets ∂𝑓

∂𝑥
(𝑡, 𝑥) = 2(𝑥 + √𝑋0) and ∂2𝑓

∂𝑥2
(𝑡, 𝑥) = 2. Therefore, observing that 𝑌𝑡 = 𝑊𝑡 is

also an Itô process (𝑑𝑌𝑡 = 𝑑𝑊𝑡), it follows that

𝑑𝑓(𝑡, 𝑌𝑡) = (∂𝑓(𝑡, 𝑊𝑡)
∂𝑥 ⋅ 0 + 1

2
∂2𝑓(𝑡, 𝑊𝑡)

∂𝑥2 ⋅ 12)𝑑𝑡 +
∂𝑓(𝑡, 𝑊)

∂𝑥 ⋅ 1𝑑𝑊𝑡

= (2 ⋅ 1
2)𝑑𝑡 + 2(𝑊𝑡 + √𝑋0)𝑑𝑊𝑡

= 𝑑𝑡 + 2√(𝑊𝑡 + √𝑋0)2𝑑𝑊𝑡, 𝑡 ⩽ 𝜏.

(1.3)

and therefore
𝑑𝑋̂𝑡 = 𝑑𝑓(𝑡, 𝑌𝑡) = 𝑑𝑡 + 2√(𝑊𝑡 + √𝑋0)2𝑑𝑊𝑡

= 𝑑𝑡 + 2√𝑋̂𝑡𝑑𝑊𝑡, 𝑡 ⩽ 𝜏.
(1.4)

Therefore, 𝑋(𝑡) = (𝑊(𝑡) + √𝑋0)2 is solution of (1.1) up to 𝑡 = 𝜏.

2) Again, we apply Itô lemma to 𝑋(𝑡). Calling 𝑓(𝑡, 𝑥) = sinh(𝐶 + 𝑡 + 𝑥) with C constant, one gets
∂𝑓
∂𝑥

(𝑡, 𝑥) = cosh(𝐶 + 𝑡 + 𝑥) and ∂2𝑓
∂𝑥2

(𝑡, 𝑥) = sinh(𝐶 + 𝑡 + 𝑥). Therefore, one obtains

𝑑𝑓(𝑡, 𝑌𝑡) = (∂𝑓(𝑡, 𝑊𝑡)
∂𝑥 ⋅ 1 + 1

2
∂2𝑓(𝑡, 𝑊𝑡)

∂𝑥2 ⋅ 12)𝑑𝑡 +
∂𝑓(𝑡, 𝑊)

∂𝑥 ⋅ 1𝑑𝑊𝑡

= (cosh(𝐶 + 𝑡 + 𝑊𝑡) + 1
2 sinh(𝐶 + 𝑡 + 𝑊𝑡))𝑑𝑡 + cosh(𝐶 + 𝑡 + 𝑊𝑡)𝑑𝑊𝑡

= (√1 + sinh(𝐶 + 𝑡 + 𝑊𝑡)2 + 1
2 sinh(𝐶 + 𝑡 + 𝑊𝑡))𝑑𝑡 + √1 + sinh(𝐶 + 𝑡 + 𝑊𝑡)2𝑑𝑊𝑡

(1.5)
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and hence

𝑑𝑋𝑡 = 𝑑𝑓(𝑡, 𝑌𝑡) = (√1 + sinh(𝐶 + 𝑡 + 𝑊𝑡)2 + 1
2 sinh(𝐶 + 𝑡 + 𝑊𝑡))𝑑𝑡 + √1 + sinh(𝐶 + 𝑡 + 𝑊𝑡)2𝑑𝑊𝑡

= (√1 + 𝑋2
𝑡 + 1

2𝑋𝑡)𝑑𝑡 + √1 + 𝑋2
𝑡 𝑑𝑊𝑡

(1.6)
Therefore, 𝑋(𝑡) = sinh(𝐶 + 𝑡 + 𝑊𝑡) is solution of (1.2). To determine 𝐶, notice that 𝑋(0) = sinh(𝐶),
hence 𝐶 = arcsinh(𝑋0).

Exercise 2.
Consider the modified Euler–Maruyama method given by

𝑋𝑛+1 = 𝑋𝑛 + 𝑓(𝑡𝑛, 𝑋𝑛)ℎ + 𝑔(𝑡𝑛, 𝑋𝑛)𝜉𝑛,

where {𝜉𝑛}𝑛⩾0 is a sequence of independent random variables such that 𝜉𝑛 is independent of 𝑋𝑛 for all 𝑛 and

E[𝜉𝑛] = 0, E[𝜉2
𝑛] = ℎ, E[𝜉3

𝑛] = 0, |E[𝜉4
𝑛]| = 𝑜(ℎ2).

Since E[𝜉ℓ
𝑛] = E[𝛥𝑊 ℓ

𝑛] for ℓ = 1, 2, 3 and E[𝜉4
𝑛] is bounded, then it is possible to prove that this method has

weak order 1.

i) Give an example of discrete random variables 𝜉𝑛 satisfying the hypotheses above.

ii) Verify numerically that this method has weak order 1. Set 𝑓(𝑥) = 𝜆𝑥 with 𝜆 = 2, 𝑔(𝑥) = 𝜇𝑥 with
𝜇 = 0.1, 𝑋0 = 1 and 𝑇 = 1. Choose different step sizes ℎ = 2−𝑖 with 𝑖 = 4, … , 10 and approximate the
expectations of the weak error via using 𝑀 = 104 realizations of {𝜉𝑛}𝑛⩾0.

Solution
An example of discrete random variable 𝜉𝑛 satisfying the requirements is

𝑃(𝜉𝑛 =
√

ℎ) = 𝑃(𝜉𝑛 = −
√

ℎ) = 1/2,

and the plot of the weak order employing this random variable is given in Figure 1.

Exercise 3.
Consider the following geometric Brownian motion

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇 ],
𝑋(0) = 𝑋0 ∈ R

(3.1)

with 𝜇, 𝜎 ∈ R. Consider a uniform partition 𝑃 = {0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 } of size 𝛥𝑡. For the linear SDE
(3.1), the Euler-Maruyama method produces the recurrence

𝑌𝑛+1 = (1 + 𝜇𝛥𝑡 + 𝜎𝛥𝑊𝑛)𝑌𝑛, 𝑛 = 0, ⋯ , 𝑁 − 1. (3.2)

1) Noting that 𝛥𝑊𝑛 is independent of 𝑌𝑛, take expected values to show that

E[𝑌𝑛+1] = (1 + 𝜇𝛥𝑡)E[𝑌𝑛].

Considering the limit 𝛥𝑡 → 0 and 𝑁 → ∞ with 𝑁𝛥𝑡 = 𝑇 fixed, show that

E[𝑌𝑁] → 𝑒𝜇𝑇E[𝑋0], 𝑁 → ∞
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Figure 1: Weak order of convergence of the modified Euler–Maruyama method of Exercise 2.

2) Show that
E[𝑌 2

𝑛+1] = ((1 + 𝜇𝛥𝑡)2 + 𝜎𝛥𝑡)E[𝑌 2
𝑛 ]

and, hence under 𝛥𝑡 → 0 and 𝑁 → ∞ with 𝑁𝛥𝑡 = 𝑇, one has that

E[𝑌 2
𝑁] → 𝑒(2𝜇+𝜎2)𝑇E[𝑋0], 𝑁 → ∞.

3) For 𝜇 = 2, 𝜎 = 0.1, 𝑋0 = 1, 𝑇 = 1, 𝑀 = 104, plot the weak error |E[𝑌𝑁] − E[𝑋𝑇]|.

Solution

1) As E[𝛥𝑊𝑛] = 0 and by the property of independence of Brownian increments, one has

E[𝑌𝑛+1] = E[(1 + 𝜇𝛥𝑡 + 𝜎𝛥𝑊𝑛)]E[𝑌𝑛] = (1 + 𝜇𝛥𝑡)E[𝑌𝑛], (3.3)

hence,
E[𝑌𝑁] = (1 + 𝜇 𝑇

𝑁)𝑁E[𝑋0]. (3.4)

Then, conclusion follows by taking the limit for 𝑛 → ∞.

2) Squaring (3.2) and taking the expectation we get

E[𝑌 2
𝑛+1] = E[(1 + 𝜇𝛥𝑡 + 𝜎𝛥𝑊𝑛)2]E[𝑌 2

𝑛 ]
= E[(1 + 𝜇𝛥𝑡)2 + 2(1 + 𝜇𝛥𝑡)(𝜎𝛥𝑊𝑛) + (𝜎𝛥𝑊𝑛)2]E[𝑌 2

𝑛 ]
= ((1 + 𝜇𝛥𝑡)2 + 𝜎2𝛥𝑡)E[𝑌 2

𝑛 ]
= ((1 + 𝜇𝛥𝑡)2 + 𝜎2𝛥𝑡)𝑛E[𝑋2

0 ]
= ((1 + (2𝜇 + 𝜎2)𝛥𝑡 + 𝜇2(𝛥𝑡)2)𝑛E[𝑋2

0 ].

(3.5)

Therefore
E[𝑌 2

𝑁] = = ((1 + (2𝜇 + 𝜎2)𝛥𝑡 + 𝜇2(𝛥𝑡)2)𝑛E[𝑋2
0 ]. (3.6)

and considering 𝑁 = 𝑇
𝛥𝑡

, one gets

lim
𝑁→∞

E[𝑌 2
𝑁] = lim

𝑁→∞
((1 + (2𝜇 + 𝜎2) 𝑇

𝑁 + 𝜇2( 𝑇
𝑁)2)𝑛 = lim

𝑁→∞
𝑒(2𝜇+𝜎2)𝑇 +𝜇2( 𝑇

𝑁
)𝑇E[𝑋2

0 ] = 𝑒(2𝜇+𝜎2)𝑇E[𝑋2
0 ].
(3.7)
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3)

Figure 2: Weak convergence for the EM method applied to (3.1).

Exercise 4.
Consider the following Langevin dynamics

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡, 𝑡 ∈ [0, 𝑇 ],
𝑋(0) = 𝑋0 ∈ R

(4.1)

with 𝜇, 𝜎 ∈ R. Consider a uniform partition 𝑃 = {0 = 𝑡0 < 𝑡1 < … < 𝑡𝑁 = 𝑇 } of size 𝛥𝑡. For the linear SDE
(4.1), the Euler-Maruyama method produces the following recurrence

𝑌𝑛+1 = (1 − 𝜇𝛥𝑡)𝑌𝑛 + 𝜎𝛥𝑊𝑛. (4.2)

Repeat the same computations of Exercise 3.

Solution
The Euler-Maruyama method (4.2), passing to the expectation, after recursion, yields

lim
𝑁→∞

E[𝑌𝑁] = lim
𝑁→∞

(1 − 𝜇 𝑇
𝑁)𝑁E[𝑋0]

= 𝑒−𝜇𝑇E[𝑋0]
(4.3)

Squaring both sides of (4.2) and taking expectations, we get

E[𝑌 2
𝑛+1] = (1 − 𝜇𝛥𝑡)2E[𝑌 2

𝑛 ] + 𝜎2𝛥𝑡.

A recursion yields

E[𝑌 2
𝑁] = (1 − 𝜇𝛥𝑡)2𝑁E[𝑋0] + 𝜎2𝛥𝑡

𝑁−1

∑
𝑗=0

((1 − 𝜇𝛥𝑡)2)𝑗. (4.4)

Under the hypothesis |1 − 𝜇𝛥𝑡| < 1, the second member on the right of (4.4) is a convergent geometric
series. Therefore, for 𝑁 → ∞, we have

E[𝑌 2
𝑁] → 𝑒−2𝜇𝑇E[𝑋2

0 ] + 𝜎2

𝜇(2 − 𝜇𝛥𝑡) .
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Figure 3: Weak convergence for the EM method applied to (4.2).

Concerning the numerical simulation, the results are shown in Figure 3.

Exercise 5.
Let us recall that if we consider an Itô stochastic differential equation (here one dimensional for simplicity)

𝑑𝑋𝑡 = 𝑎(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡)𝑑𝑊𝑡

whose solution is 𝑋𝑡, then, 𝑋𝑡 solves the following Stratonovich SDE

𝑑𝑋𝑡 = 𝑎(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡) ∘ 𝑑𝑊𝑡,

where 𝑎(𝑡, 𝑥) = 𝑎(𝑡, 𝑥) − 1
2
𝑏(𝑡, 𝑥) ∂𝑏

∂𝑥
(𝑡, 𝑥). On the contrary, given a Stratonovich SDE

𝑑𝑋𝑡 = 𝑎(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡) ∘ 𝑑𝑊𝑡,

then the corresponding Itô differential equation is

𝑑𝑋𝑡 = (𝑎(𝑡, 𝑥) + 1
2𝑏(𝑡, 𝑥) ∂𝑏

∂𝑥(𝑡, 𝑥))𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡)𝑑𝑊𝑡.

Let 𝜆, 𝜇 ∈ R and consider the SDE for 𝑡 ∈ [0, 𝑇 ]

𝑑𝑋(𝑡) = 𝜆𝑋(𝑡)d𝑡 + 𝜇𝑋(𝑡)d𝑊(𝑡),
𝑋(0) = 𝑋0.

(5.1)

The solution of (5.1) in the Itô sense is given by 𝑋(𝑡) = 𝑋0𝑒(𝜆− 1
2

𝜇2)𝑡+𝜇𝑊(𝑡).
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Let 𝑃 = {0 = 𝑡0 < 𝑡1 < … < 𝑡𝑚 = 𝑇 } be a partition of [0, 𝑇 ] of size 𝛥𝑡 and define the Euler polygonal
interpolant 𝑊 of 𝑊 on 𝑃 as

𝑊(𝑡) = 𝑊(𝑡𝑛−1) + (𝑊(𝑡𝑛) − 𝑊(𝑡𝑛−1)) 𝑡 − 𝑡𝑛−1
𝑡𝑛 − 𝑡𝑛−1

, 1 ⩽ 𝑛 ⩽ 𝑚, 𝑡𝑛−1 ⩽ 𝑡 ⩽ 𝑡𝑛.

If we replace 𝑊 by 𝑊 in the SDE (5.1), we obtain the ordinary differential equation

d
d𝑡𝑋𝑚(𝑡) = 𝜆𝑋𝑚(𝑡) + 𝜇𝑋𝑚(𝑡) d

d𝑡𝑊(𝑡),

𝑋𝑚(0) = 𝑋0.
(5.2)

iv) Compute the solution 𝑋𝑚(𝑡) of (5.2).

v) What is the limit in L2(𝛺) of 𝑋𝑚(𝑡) as 𝑚 → ∞ (i.e., as 𝛥𝑡 → 0)?

In order to approximate numerically the solution 𝑋𝑚 of (5.2) we can use the following scheme

𝑋𝑚(𝑡𝑛+1) = 𝑋𝑚(𝑡𝑛) + 𝜆𝑋𝑚(𝑡𝑛)𝛥𝑡 + 𝜇(𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛)) 1
𝛥𝑡 ∫

𝑡𝑛+1

𝑡𝑛

𝑋𝑚(𝑠)d𝑠, (5.3)

where we need to approximate the integral ∫𝑡𝑛+1

𝑡𝑛
𝑋𝑚(𝑠)d𝑠.

vi) If we approximate the integral with the Euler formula

∫
𝑡𝑛+1

𝑡𝑛

𝑋𝑚(𝑠)d𝑠 ≈ 𝛥𝑡𝑋𝑚(𝑡𝑛),

what method do we obtain?

vii) We now approximate the integral with the trapezoidal rule

∫
𝑡𝑛+1

𝑡𝑛

𝑋𝑚(𝑠)d𝑠 ≈ 𝛥𝑡
2 (𝑋𝑚(𝑡𝑛) + 𝑋𝑚(𝑡𝑛+1)),

and make an Euler prediction for the implicit term

𝑋𝑚(𝑡𝑛+1) ≈ 𝑋𝑚(𝑡𝑛) + 𝜆𝑋𝑚(𝑡𝑛)𝛥𝑡 + 𝜇𝑋𝑚(𝑡𝑛)(𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛)).

Write the method derived from these approximations.

viii) Let 𝑇 = 1, 𝜆 = 2, 𝜇 = 1, 𝑋0 = 1 and consider a uniform partition of [0, 𝑇 ] with 𝛥𝑡 = 10−2. Implement
the numerical methods derived in points vi) and vii). What solutions do these methods converge to?
What are the strong orders of convergence of the methods? In order to observe numerically the strong
order, plot the error for different values of 𝛥𝑡 = 2−𝑖 with 𝑖 = 4, 5, … , 11 employing 𝑀 = 104 different
Brownian paths.

Solution

i) We have almost everywhere that

d
d𝑡𝑊(𝑡) =

𝑚

∑
𝑖=1

𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)
𝑡𝑖 − 𝑡𝑖−1

𝜒(𝑡𝑖−1,𝑡𝑖)(𝑡),

and hence 𝑦𝑚(𝑡) = 𝑋𝑚(𝑡) satisfies the ODE

̇𝑦𝑚(𝑡) = 𝑓𝑚(𝑡)𝑦𝑚(𝑡),
𝑦(0) = 𝑋0,

where 𝑓𝑚(𝑡) = 𝜆 + 𝜇
𝑚

∑
𝑖=1

𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)
𝑡𝑖 − 𝑡𝑖−1

𝜒(𝑡𝑖−1,𝑡𝑖)(𝑡),
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whose solution is given by 𝑦(𝑡) = 𝑋0𝑒∫𝑡
0 𝑓𝑚(𝑠)d𝑠. For 𝑡 ∈ [0, 𝑇 ], we set 𝑘 such that 𝑡𝑘−1 ⩽ 𝑡 < 𝑡𝑘 and

compute

∫
𝑡

0
𝑓𝑚(𝑠)d𝑠 = 𝜆𝑡 + 𝜇

𝑘−1

∑
𝑖=1

(𝑊(𝑡𝑖) − 𝑊(𝑡𝑖−1)) + 𝜇(𝑊(𝑡𝑘) − 𝑊(𝑡𝑘−1)) 𝑡 − 𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

= 𝜆𝑡 + 𝜇(𝑊(𝑡𝑘−1) + (𝑊(𝑡𝑘) − 𝑊(𝑡𝑘−1)) 𝑡 − 𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

)

= 𝜆𝑡 + 𝜇𝑊(𝑡).

ii) As 𝑡 ↦ 𝑊(𝑡) is almost surely continuous, we have for all 𝑡

lim
𝑚→∞

∫
𝑡

0
𝑓𝑚(𝑠)d𝑠 = 𝜆𝑡 + 𝜇𝑊(𝑡) in L2(𝛺),

and consequently 𝑦𝑚(𝑡) = 𝑋𝑚(𝑡) converges to 𝑋(𝑡) = 𝑒𝜆𝑡+𝜇𝑊(𝑡) in L2(𝛺), which is in fact the solution
of (5.1) in the Stratonovich sense. That makes sense because using 𝑊(𝑡) is anticipating.

iii) We obtain the Euler–Maruyama method from Series 1.

iv) The method can be explicitly written as

𝑋𝑚
𝑛+1 = 𝑋𝑚

𝑛 + 𝜆𝑋𝑚
𝑛 𝛥𝑡 + 𝜇𝛥𝑊𝑛+1𝑋𝑚

𝑛 + 1
2
𝜇𝛥𝑊𝑛+1(𝜆𝑋𝑚

𝑛 𝛥𝑡 + 𝜇𝑋𝑚
𝑛 𝛥𝑊𝑛+1),

where 𝑋𝑚
𝑛 = 𝑋𝑚(𝑡𝑛) and 𝛥𝑊𝑛+1 = 𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛).

v) The Euler–Maruyama method converges with strong order 1/2 to the Itô solution 𝑋(𝑡). Moreover, we
verify that the second method converges to the solution 𝑋(𝑡) = 𝑒𝜆𝑡+𝜇𝑊(𝑡) in the Stratonovich sense in
L2(𝛺) and that the strong order of convergence is 1. The plots are given in Figure 4.

Figure 4: Euler–Maruyama and trapezoidal methods employed in Exercise 5 with their rates of convergence.
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