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Exercise 1.

1) Show that the following nonlinear SDE
dXt :dt+2\/ Xtth (11)

has solution X, = (W, + /Xy)? for t < 7 =inf{t >0 : W, < —/X,}.

2) Show that the following nonlinear SDE

dX, = <\/1+X§+%Xt>dt+\/1+X§th (1.2)

has solution X (¢) = sinh(arcsinh(Xy) 4+t + W;).

Exercise 2.
Consider the modified Euler-Maruyama method given by
X1 = X+ [, Xp)h 4 g(tn, X5,
where {&,},,>0 is a sequence of independent random variables such that &, is independent of X, for all n and
E[¢,]=0, E[g]=h  Eg]=0, [E[&] =o(h?).

Since E[¢4] = E[AW/] for £ = 1,2,3 and E[£}] is bounded, then it is possible to prove that this method has
weak order 1.

i) Give an example of discrete random variables &,, satisfying the hypotheses above.

i1) Verify numerically that this method has weak order 1. Set f(z) = Az with A = 2, g(x) = px with
=01, X,=1and T = 1. Choose different step sizes h = 2% with ¢ = 4, ..., 10 and approximate the
expectations of the weak error via using M = 10? realizations of {&, },,>0-

Exercise 3.

Consider the following geometric Brownian motion

dXt = /,LXtdt + O—Xtth, t = [O,CZW]7

X(0) =X, eR (3.1)

with u, o € R. Consider a uniform partition P = {0 =, < t; < ... <ty =T} of size At. For the linear SDE
(3.1), the Euler-Maruyama method produces the recurrence

Y =0+ pAt+ocAW,)Y,, n=0-,N—1 (3.2)



1) Noting that AW, is independent of Y,,, take expected values to show that
E[Yn+1] = (1 + NAt)E[Yn]
Considering the limit At — 0 and N — oo with NAt = T fixed, show that

E[Yyn] — e*TE[X,], N — o

2) Show that
E[Y,7 1] = (14 pAt)? + o AE[Y?]

and, hence under At — 0 and N — oo with NA¢ = T, one has that

E[YR] — e@vto)TR[ X ], N — co.

3) For u=2,0=0.1,X,=1,T =1, M = 10, plot the weak error |E[Yy] — E[X/]|.

Exercise 4.

Consider the following Langevin dynamics

dX, = pX,dt + odW,, t € 0,7,

X(0)=X,€R (41)

with u, 0 € R. Consider a uniform partition P = {0 =ty < t; < ... <ty =T} of size At. For the linear SDE
(4.1), the Euler-Maruyama method produces the following recurrence
Y1 = (1 —pAt)Y, + cAW,,. (4.2)

Repeat the same computations of Exercise 3.

Exercise 5.

Let us recall that if we consider an Itd stochastic differential equation (here one dimensional for simplicity)
dX; = a(t, X;)dt + b(t, X;)dW,
whose solution is X, then, X, solves the following Stratonovich SDE
dX; = a(t, X;)dt + b(t, X;) o dW,,

where a(t,x) = a(t,z) — %b(t, x)?(t, x). On the contrary, given a Stratonovich SDE
xT

dXt = Q(t, Xt)dt + b(t, Xt) (o] th,

then the corresponding It6 differential equation is

dX, = (g(t, T) + %b(t,x)%(t,x))dt +b(t, X,)dW,.

Let A, i € R and consider the SDE for t € [0, T]

dX (1) = AX(H)dt + pX (£)dW (1),

X(0) = X,. (5.1)

1
The solution of (5.1) in the Itd sense is given by X (¢) = Xoe()‘_i“z)”/‘w(t).



Let P={0=1ty <t; <..<t, =T} be a partition of [0,T] of size At and define the Euler polygonal
interpolant W of Won P as

W) = Wty 1) + (W(ty) — Wty 1))t

ﬁ, 1<n<m, t,<t<t,.
n -~ ‘n—1

If we replace W by W in the SDE (5.1), we obtain the ordinary differential equation

d<sr oy om T L
T = AXT () + p X () W (), (5.2)

Xm(0) = X,.
iv) Compute the solution X™(t) of (5.2).
v) What is the limit in L2(£2) of X™(t) as m — oo (i.c., as At — 0)?
In order to approximate numerically the solution X™ of (5.2) we can use the following scheme

1 tny1

X (1) = X () + AX ™ (8) A+ p(W (t1) — W(tn) %7 X" (s)ds, (5.3)

where we need to approximate the integral j;th X ™(s)ds.

vi) If we approximate the integral with the Euler formula

tn+1

—~

X™(s)ds ~ AtX™(t,),

what method do we obtain?
vii) We now approximate the integral with the trapezoidal rule

tn+1

~ At —~ ~
X" (s)ds ~ = (X™(t,) + X" (tn 1)),

t

n

and make an Euler prediction for the implicit term
X (tni1) ~ X7 (8) +AX™ (1) At 4 p X7 (8) (W (t41) — W (E,))-
Write the method derived from these approximations.

viii) Let T =1, A\=2, p =1, Xy = 1 and consider a uniform partition of [0,7] with At = 10~2. Implement
the numerical methods derived in points vi) and vii). What solutions do these methods converge to?
What are the strong orders of convergence of the methods? In order to observe numerically the strong
order, plot the error for different values of At = 27% with ¢ = 4,5, ..., 11 employing M = 10* different
Brownian paths.
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