

Series 7 - November 6, 2024

Exercise 1.

Consider the following SDE

$$dX_t = \mu X_t dt + \sigma X_t dW(t), \quad t \in [0, T]$$

$$X(0) = X_0,$$
(1.1)

with $X(0) \in \mathbb{R}$, $\mu \in \mathbb{R}$, $\sigma > 0$. Equation (1.1) admits a unique closed-form solution and it is called Geometric Brownian motion.

- 1) Find the closed form solution for (1.1).
- 2) Consider X(0) = 1, $\mu = 2$, $\sigma = 1$, and T = 1. Compute the Euler-Maruyama discretization $\{X_n\}_{n=0}^N$ of (1.1) for $\Delta t = \frac{T}{n} = 0.1, 0.05, 0.01, 0.005, 0.001$ and for a single realization plot $\sup_{0 \le n \le N} |X_{t_n} X_n|$ versus $(\Delta t)^{\frac{1}{2}}$.
- 3) Compute $Z_N = \sup_{0 \le n \le N} \frac{|X_{t_n} X_n|}{(\Delta t)^{\frac{1}{2}}}$ for $\Delta t = T/N$ with N = 100 and M = 1000 independent trajectories and plot the empirical CDF(Z_N). Do the same computation for N = 1000; does CDF(Z_N) converge to a limit distribution?
- 4) What happens if you take $Z_N^{\alpha} = \sup_{0 \le n \le N} \frac{|X_{t_n} X_n|}{(\Delta t)^{\alpha}}$ for $\alpha < \frac{1}{2}$? Is this result consistent with your expectations?

Exercise 2.

Consider the 1D autonomous SDE

$$\begin{cases} dX_t &= b(X_t)dt + \sigma(X_t)dW_t, \quad t \in [0,T], \\ X(0) &= \eta \in L^2(\Omega), \end{cases} \tag{2.1}$$

and the stochastic θ -method

$$X_{n+1} = X_n + \theta \Delta t b(X_{n+1}) + (1 - \theta) \Delta t b(X_n) + \sigma(X_n) \Delta W_n \tag{2.2}$$

Assume b, σ to satisfy a global Lipschitz condition and a linear growth bound and, moreover, b is continuously differentiable with bounded derivative $|b'(x)| \leq K$ for all $x \in \mathbb{R}$.

- 1) Show that if $\Delta t < \frac{1}{K\theta}$ the numerical solution is well defined (uniquely exists)

 Hint. You can show that the map $\varphi(x) = \theta b(x) \Delta t + \gamma$, $\gamma = X_n + (1 \theta) b(X_n) \Delta t + \sigma(X_n) \Delta W_n$ is contractive
- 2) Show that $\exists C > 0 : \sup_{0 \leqslant n \leqslant N} \mathbb{E}[|X_n|^2] \leqslant C$

 $\textit{Hint. multiply (2.2) by X_n and use the identity $(X_{n+1}-X_n)X_n=\frac{1}{2}X_{n+1}^2-\frac{1}{2}X_n^2-\frac{1}{2}(X_{n+1}-X_n)^2$}$

3) Defining the (non adapted) process

$$\begin{split} \hat{X}_s &= X_n + (\theta b(X_{n+1}) + (1-\theta)b(X_n))(s-t_n) + \sigma(X_n)(W_s - W_{t_n}) \\ &= X_n + \int_{t_n}^s (\theta b(X_{n+1}) + (1-\theta)b(X_n))d\tau + \int_{t_n}^s \sigma(X_n)dW_\tau, \quad t_n < s \leqslant t_{n+1}. \end{split} \tag{2.3}$$

Redo the same steps of the proof of the strong convergence of Euler-Maruyama to show that $\mathbb{E}[\sup_{0 \leqslant t \leqslant T} |X_s - \hat{X}_s|^2] \leqslant C\Delta t$.

Exercise 3.

Let $b>0,\,\sigma\in\mathbb{R}$ and $X_0\in\mathbb{R}$ and consider the Langevin equation

$$dX(t) = -bX(t)dt + \sigma dW(t), \quad t \in [0, T],$$

$$X(0) = X_0.$$
(3.1)

Remark. The solution X(t) is also called the Ornstein-Uhlenbeck process.

- i) Solve equation (3.1).
- $ii) \ \ \text{Verify that } \lim_{t\to\infty}\mathbb{E}[X(t)]=0 \ \text{and } \lim_{t\to\infty}\text{Var}(X(t))=\frac{\sigma^2}{2b} \ \text{and the distribution of the limit random variable } X(\infty) \ \text{is } \mathcal{N}\big(0,\frac{\sigma^2}{2b}\big).$

Remark. The limit distribution is still $\mathcal{N}(0, \frac{\sigma^2}{2b})$ if X_0 is a Gaussian random variable independent of the Brownian motion.

The stochastic θ -method applied to the SDE

$$dX(t) = f(t, X(t))dt + g(t, X(t))dW(t),$$

$$X(0) = X_0,$$

is defined for $\theta \in [0,1]$ and a partition $P = \{0 = t_0 < t_1 < ... < t_N = T\}$ of size Δt as

$$X_{n+1} = X_n + f(t_n, X_n) \Delta t(1-\theta) + f(t_{n+1}, X_{n+1}) \Delta t\theta + g(t_n, X_n) (W(t_{n+1}) - W(t_n)).$$

For a given $\epsilon > 0$, set T = 1, $\sigma = \sqrt{2/\epsilon}$, $b = 1/\epsilon$ and $X_0 = 1$ and apply the θ -method to approximate the solution X(t) of (3.1).

- iii) Set $\epsilon = 1/20$. Approximate the solution of equation (3.1) employing the θ -method with $\theta = 0, 1/2, 1$ and uniform partitions $P_k = \{0 = t_0 < t_1 < ... < t_{N_k} = 1\}$ with $N_k = 2^k$ and k = 2, 4, 6. Verify that the θ -method with $\theta = 0$ is unstable for large values of Δt .
- iv) Consider a uniform partition $P = \{0 = t_0 < t_1 < ... < t_N = 1\}$ with $N = 2^6$. For $\epsilon = 1/20, 1/40, 1/60$ approximate the probability density function f of X_N employing the θ -method with $\theta = 0, 1/2, 1$. Verify that the θ -method with $\theta = 1/2$ is the only one which preserves the limit distribution $N(0, \frac{\sigma^2}{2b})$.

 Hint. In order to approximate the density function f of X_N , make a histogram of X_N for $M = 10^4$ independent sample paths and normalize it so that $\int_{\mathbb{R}} f dx = 1$.

Exercise 4.

Consider the SDE

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t), \tag{4.1}$$

with initial condition $X(0) = X_0$ and where W is a one-dimensional Brownian motion. Show that the fully implicit method

$$X_{n+1} = X_n + \lambda X_{n+1} \Delta t + \mu X_{n+1} \Delta W_n,$$

has unbounded first moments, i.e., $\mathbb{E}[|X_n|] = +\infty$ for all n.

Exercise 5.

Show that the stochastic Heun method

$$\begin{split} Y_{n+1} &= Y_n + \frac{1}{2}(b(Y_n,t_n) + b(\bar{Y}_n,t_n)) \varDelta t + \frac{1}{2}(\sigma(Y_n,t_n) + \sigma(\bar{Y}_n,t_n)) \varDelta W_n \\ \bar{Y}_n &= Y_n + b(Y_n,t_n) \varDelta t + \sigma(Y_n,t_n) \varDelta W_n \end{split}$$

with fixed time step Δt , i.e. $t_n = n\Delta t$ for all n, is not consistent when applied to the SDE $dX_t = 2X_t dW_t$,
$$\begin{split} t > 0, \ X_0 = 1. \\ \textit{Hint: show that } \mathbb{E}[X_t] = 1, \ \forall t, \ \text{whereas } \mathbb{E}[Y_n] \not\to 1 \ \text{as } \Delta t \to 0. \end{split}$$