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Exercise 1.
(The maximum principle) Consider a 𝑑-dimensional SDE driven by an 𝑚-dimensional Brownian motion

with 𝑚 ⩾ 𝑑.
𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵𝑡, 𝑡 ⩾ 0

and its corresponding generator

𝐿 = 1
2

𝑑

∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥) ∂2

∂𝑥𝑖∂𝑥𝑗
+

𝑑

∑
𝑖=1

𝑏𝑖(𝑥) ∂
∂𝑥𝑖

with 𝑎𝑖𝑗 = ∑𝑚
𝑙=1 𝜎𝑖𝑙𝜎𝑗𝑙. Let 𝐷 ⊂ R𝑑 be a bounded domain and suppose 𝑏, 𝜎 globally Lipschitz and satisfying

the linear growth bound. Moreover assume 𝑎 uniformly elliptic on 𝐷̄ (i.e. ∃𝜆 > 0 such that 𝑣𝑇𝑎(𝑥)𝑣 ⩾ 𝜆|𝑣|2 for
all 𝑥 ∈ 𝐷̄, 𝑣 ∈ R𝑑). Let 𝑢 ∈ 𝐶2(𝐷) ∩ 𝐶(𝐷̄). Using the Feynman-Kac formula, show the maximum principle,
i.e.

• if 𝐿𝑢 ⩾ 0, then 𝑢(𝑥) ⩽ max
∂𝐷

𝑢 for all 𝑥 ∈ 𝐷

• if 𝐿𝑢 = 0, then min
∂𝐷

𝑢 ⩽ 𝑢(𝑥) ⩽ max
∂𝐷

𝑢 for all 𝑥 ∈ 𝐷

Solution
Let 𝜏 = inf{𝑡 ∶ 𝑋𝑥,0

𝑡 ∉ 𝐷}, where 𝑋𝑥,0
𝑡 is the process that starts in 𝑥 at time zero, and set 𝑓 = 𝐿𝑢. Then

𝑢(𝑥) = E[𝜑(𝑋𝑥,0
𝜏 )] − E[∫

𝜏

0
𝑓(𝑋𝑥,0

𝑠 )𝑑𝑠].

Hence, if 𝑓 ⩾ 0, then we have
𝑢(𝑥) ⩽ E[𝜑(𝑋𝑥,0

𝜏 )] ⩽ max
∂𝐷

𝑢,

If 𝑓 = 0, then 𝑓 ⩾ 0 and 𝑓 ⩽ 0, hence
min
∂𝐷

𝑢 ⩽ 𝑢(𝑥) ⩽ max
∂𝐷

𝑢.

Exercise 2.
Consider a 𝑑-dimensional SDE driven by an 𝑚-dimensional Brownian motion with 𝑚 ⩾ 𝑑.

𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 + 𝜎(𝑋𝑡)𝑑𝐵𝑡, 𝑡 ⩾ 0 (2.1)

and its corresponding generator

𝐿 = 1
2

𝑑

∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥) ∂2

∂𝑥𝑖∂𝑥𝑗
+

𝑑

∑
𝑖=1

𝑏𝑖(𝑥) ∂
∂𝑥𝑖

with 𝑎𝑖𝑗 = ∑𝑚
𝑙=1 𝜎𝑖𝑙𝜎𝑗𝑙. Let 𝐷 ⊂ R𝑑 be a bounded open domain and suppose 𝑏, 𝜎 globally Lipschitz and

satisfying the linear growth bound. Moreover assume 𝑎 uniformly elliptic on 𝐷̄ (i.e. ∃𝜆 > 0 such that
𝑣𝑇𝑎(𝑥)𝑣 ⩾ 𝜆|𝑣|2 for all 𝑥 ∈ 𝐷̄, 𝑣 ∈ R𝑑).
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1) Show that if 𝑢 ∈ 𝐶2(𝐷) ∩ 𝐶(𝐷̄) is the solution of

{𝐿𝑢 = −1 on 𝐷
𝑢|∂𝐷

= 0,
(2.2)

then 𝑢 has the characterization 𝑢(𝑥) = E𝑥(𝜏) where 𝜏 = inf{𝑡 ∶ 𝑋𝑡 ∉ 𝐷} and E𝑥 denotes expectation
when the process (2.1) starts in 𝑥 at time zero.

2) Let {𝐵𝑡}𝑡 be a one dimensional Brownian motion and 𝜏 = inf{𝑡 ∶ 𝐵𝑡 ∉ (−1, 1)}. Compute E[𝜏 ].

3) Let
𝑑𝑋𝑡 = 𝜎(𝑋𝑡)𝑑𝐵𝑡

𝑋0 = 𝑥
(2.3)

with 𝜎 globally Lipschitz on R and strictly positive in [0, 1]. Let 𝜏 = inf{𝑡 ∶ 𝑋𝑡 ∉ (0, 1)} be the exit
time from (0, 1). Show that 𝜏 < ∞ a.s. and compute 𝑃(𝑋𝜏 = 1) (notice that this probability does not
depend on 𝜎).

Solution

1) Just apply the Feynman-Kac formula, recalling that here 𝜙 = 0, 𝑐 = 0 and 𝑓 = −1.

2) Let 𝑑 = 1 and d𝑋𝑡 = d𝐵𝑡 then (2.2) becomes

{
1
2
𝑢′′ = −1

𝑢(−1) = 𝑢(1) = 0

and has the solution 𝑢(𝑥) = 1 − 𝑥2. Hence E[𝜏 ] = 𝑢(0) = 1.

3) Under the assumptions on 𝜎, (2.2) in (0, 1) has a unique solution 𝑢 ∈ 𝐶2((0, 1)) ∩ 𝐶([0, 1]) and is non
negative from maximum principle (see Exercise 1). From point 1) we have that E𝑥[𝜏 ] = 𝑢(𝑥) < ∞ for all
𝑥 ∈ 𝐷, hence 𝜏 is a.s. bounded. To compute 𝑃(𝑋𝜏 = 1) one has two possibilities. The former consists
to see that 𝑢(𝑥) = 𝑃(𝑋𝜏 = 1) is solution of

{
1
2
𝜎2(𝑥)𝑢″(𝑥) = 0 0 < 𝑥 < 1

𝑢(0) = 0, 𝑢(1) = 1,
(2.4)

As 𝜎2(𝑥) is always strictly positive, the problem is equivalent to 𝑢″ = 0 with the above boundary
condition and, hence, its solution does not depend on the diffusion. Therefore, the solution is 𝑢(𝑥) =
𝑃(𝑋𝜏 = 1) = 𝑥.
Otherwise, one could have notice that

𝑋𝑡∧𝜏 = 𝑥 + ∫
𝑡∧𝜏

0
𝜎(𝑋𝑠)𝑑𝐵𝑠

is a martingale. Therefore E𝑥[𝑋𝑡∧𝜏] = 𝑥. As |𝑋𝑡∧𝜏| ⩽ 1, then we can use Lebesgue’s theorem and passing
to the limit as 𝑡 → +∞ one gets 𝑥 = E𝑥[𝑋𝜏]. As 𝑋𝜏 can have values 0 or 1, we get 𝑃(𝑋𝜏 = 1) = 𝑥.

Exercise 3.
Let 𝜆 = 2, 𝜇 = 1 and consider the stochastic differential equation

𝑑𝑋(𝑡) = 𝜆𝑋(𝑡)𝑑𝑡 + 𝜇𝑋(𝑡)𝑑𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ,
𝑋(0) = 𝑋0, (3.1)
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and the Euler–Maruyama (EM) method for (3.1)

𝑋𝑛+1 = 𝑋𝑛 + 𝜆𝑋𝑛𝛥𝑡 + 𝜇𝑋𝑛(𝑊(𝑡𝑛+1) − 𝑊(𝑡𝑛)).

The exact solution of (3.1) is given by 𝑋(𝑡) = 𝑋0 exp((𝜆 − 1
2
𝜇2)𝑡 + 𝜇𝑊(𝑡)).

Compute a discretized Brownian path over [0, 1] with 𝛿𝑡 = 2−8 and compare the exact solution (on the
discretized path) with the EM method (using the same Brownian path) with 𝛥𝑡 = 24𝛿𝑡, 22𝛿𝑡.

Solution
The plot is given in Figure 1.

Figure 1: EM approximation of the SDE in Exercise .

Exercise 4.
A numerical method for an SDE

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡))𝑑𝑡 + 𝑔(𝑋(𝑡))𝑑𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ,
𝑋(0) = 𝑋0, (4.1)

is said to have a strong order of convergence equals to 𝑟 if there exists a constant 𝐶 such that

E[ sup
0⩽𝑛⩽𝑁

|𝑋𝑛 − 𝑋(𝑡𝑛)|] ⩽ 𝐶(𝛥𝑡)𝑟,

with 𝑁 = 𝑇 /𝛥𝑡. Consider the following one dimensional SDE

𝑑𝑋(𝑡) = 𝜆𝑋(𝑡)𝑑𝑡 + 𝜇𝑋(𝑡)𝑑𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ,
𝑋(0) = 𝑋0,

(4.2)

and set 𝑡𝑛 = 𝑇 = 1. Consider {𝑋𝑛}𝑁
𝑛=0 the Euler-Maruyama approximation and set 𝑒s

𝛥𝑡 ∶= E|𝑋𝑁 − 𝑋(𝑇 )|.
Verify numerically that the Euler-Maruyama method satisfies 𝑒s

𝛥𝑡 ⩽ 𝐶(𝛥𝑡)1/2. To evaluate E|𝑋𝑁 − 𝑋(𝑇 )|
you need to compute 1

𝑀
∑𝑀

𝑖=1 |𝑋𝑖
𝑁 − 𝑋𝑖(𝑇 )|, i.e., the average over 𝑀 realizations of the random variables at

time 𝑇 = 1. For that:

i) take 𝑀 = 105 independent discretized Brownian path over [0, 1] with 𝛿𝑡 = 2−10,
ii) for each path apply EM with 𝛥𝑡 = 2𝑝𝛿𝑡, 1 ⩽ 𝑝 ⩽ 5 and store the endpoint error (at 𝑡 = 𝑇),

iii) take the mean over the error and then report the result (𝛥𝑡 versus 𝑒s
𝛥𝑡) in a loglog plot.
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Figure 2: Strong order of convergence 1/2 for the EM method.

Solution
The plot is given in Figure 2.

Exercise 5.
A numerical method for an SDE

𝑑𝑋(𝑡) = 𝑓(𝑋(𝑡))𝑑𝑡 + 𝑔(𝑋(𝑡))𝑑𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ,
𝑋(0) = 𝑋0, (5.1)

is said to have a weak order of convergence equals to 𝑟 if there exists a constant 𝐶 such that

sup
0⩽𝑛⩽𝑁

|E𝑝(𝑋𝑛) − E𝑝(𝑋(𝑡𝑛))| ⩽ 𝐶(𝛥𝑡)𝑟,

with 𝑁 = 𝑇 /𝛥𝑡 and all sufficiently smooth function 𝑝. Consider the following one dimensional SDE

𝑑𝑋(𝑡) = 𝜆𝑋(𝑡)𝑑𝑡 + 𝜇𝑋(𝑡)𝑑𝑊(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇 ,
𝑋(0) = 𝑋0,

(5.2)

with 𝜆 = 2, 𝜇 = 1, and 𝑒w
𝛥𝑡 ∶= |E(𝑋𝑁) − E(𝑋(𝑇 ))| and verify numerically that the Euler-Maruyama method

satisfies 𝑒w
𝛥𝑡 ⩽ 𝐶𝛥𝑡.

Solution
The plot is given in Figure 3.
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Figure 3: Weak order of convergence 1 for the EM method.
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