

Series 6 - October 30, 2024

Exercise 1.

(The maximum principle) Consider a d-dimensional SDE driven by an m-dimensional Brownian motion with $m \ge d$.

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \geqslant 0$$

and its corresponding generator

$$L = \frac{1}{2} \sum_{i,j=1}^d a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i(x) \frac{\partial}{\partial x_i}$$

with $a_{ij} = \sum_{l=1}^m \sigma_{il}\sigma_{jl}$. Let $D \subset \mathbb{R}^d$ be a bounded domain and suppose b, σ globally Lipschitz and satisfying the linear growth bound. Moreover assume a uniformly elliptic on \bar{D} (i.e. $\exists \lambda > 0$ such that $v^T a(x)v \geqslant \lambda |v|^2$ for all $x \in \bar{D}, v \in \mathbb{R}^d$). Let $u \in C^2(D) \cap C(\bar{D})$. Using the Feynman-Kac formula, show the maximum principle, i.e.

- if $Lu \ge 0$, then $u(x) \le \max_{\partial D} u$ for all $x \in D$
- if Lu=0, then $\min_{\partial D} u \leqslant u(x) \leqslant \max_{\partial D} u$ for all $x \in D$

Solution

Let $\tau = \inf\{t : X_t^{x,0} \notin D\}$, where $X_t^{x,0}$ is the process that starts in x at time zero, and set f = Lu. Then

$$u(x) = \mathrm{E} \Big[\varphi \Big(X_{\tau}^{x,0} \Big) \Big] - \mathrm{E} \bigg[\int_{0}^{\tau} f \Big(X_{s}^{x,0} \Big) ds \bigg].$$

Hence, if $f \ge 0$, then we have

$$u(x) \leqslant \mathbb{E}\left[\varphi\left(X_{\tau}^{x,0}\right)\right] \leqslant \max_{\partial D} u,$$

If f = 0, then $f \ge 0$ and $f \le 0$, hence

$$\min_{\partial D} u \leqslant u(x) \leqslant \max_{\partial D} u.$$

Exercise 2.

Consider a d-dimensional SDE driven by an m-dimensional Brownian motion with $m \ge d$.

$$dX_t = b(X_t)dt + \sigma(X_t)dB_t, \quad t \geqslant 0 \tag{2.1}$$

and its corresponding generator

$$L = \frac{1}{2} \sum_{i=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i}$$

with $a_{ij} = \sum_{l=1}^m \sigma_{il} \sigma_{jl}$. Let $D \subset \mathbb{R}^d$ be a bounded open domain and suppose b, σ globally Lipschitz and satisfying the linear growth bound. Moreover assume a uniformly elliptic on \bar{D} (i.e. $\exists \lambda > 0$ such that $v^T a(x)v \geqslant \lambda |v|^2$ for all $x \in \bar{D}, v \in \mathbb{R}^d$).

1) Show that if $u \in C^2(D) \cap C(\bar{D})$ is the solution of

$$\begin{cases} Lu = -1 & \text{on } D \\ u_{|_{\partial D}} = 0, \end{cases}$$
 (2.2)

then u has the characterization $u(x) = \mathbb{E}^x(\tau)$ where $\tau = \inf\{t : X_t \notin D\}$ and \mathbb{E}^x denotes expectation when the process (2.1) starts in x at time zero.

- 2) Let $\{B_t\}_t$ be a one dimensional Brownian motion and $\tau = \inf\{t : B_t \notin (-1,1)\}$. Compute $\mathbb{E}[\tau]$.
- 3) Let

$$dX_t = \sigma(X_t)dB_t$$

$$X_0 = x$$
(2.3)

with σ globally Lipschitz on $\mathbb R$ and strictly positive in [0,1]. Let $\tau=\inf\{t:X_t\notin(0,1)\}$ be the exit time from (0,1). Show that $\tau<\infty$ a.s. and compute $P(X_\tau=1)$ (notice that this probability does not depend on σ).

Solution

- 1) Just apply the Feynman-Kac formula, recalling that here $\phi = 0, c = 0$ and f = -1.
- 2) Let d = 1 and $dX_t = dB_t$ then (2.2) becomes

$$\begin{cases} \frac{1}{2}u'' = -1\\ u(-1) = u(1) = 0 \end{cases}$$

and has the solution $u(x) = 1 - x^2$. Hence $\mathbb{E}[\tau] = u(0) = 1$.

3) Under the assumptions on σ , (2.2) in (0,1) has a unique solution $u \in C^2((0,1)) \cap C([0,1])$ and is non negative from maximum principle (see Exercise 1). From point 1) we have that $\mathbb{E}^x[\tau] = u(x) < \infty$ for all $x \in D$, hence τ is a.s. bounded. To compute $P(X_\tau = 1)$ one has two possibilities. The former consists to see that $u(x) = P(X_\tau = 1)$ is solution of

$$\begin{cases} \frac{1}{2}\sigma^2(x)u''(x) = 0 & 0 < x < 1\\ u(0) = 0, \ u(1) = 1, \end{cases}$$
 (2.4)

As $\sigma^2(x)$ is always strictly positive, the problem is equivalent to u''=0 with the above boundary condition and, hence, its solution does not depend on the diffusion. Therefore, the solution is $u(x) = P(X_{\tau} = 1) = x$.

Otherwise, one could have notice that

$$X_{t \wedge \tau} = x + \int_0^{t \wedge \tau} \sigma(X_s) dB_s$$

is a martingale. Therefore $\mathbb{E}^x[X_{t\wedge \tau}]=x$. As $|X_{t\wedge \tau}|\leqslant 1$, then we can use Lebesgue's theorem and passing to the limit as $t\to +\infty$ one gets $x=\mathbb{E}^x[X_\tau]$. As X_τ can have values 0 or 1, we get $P(X_\tau=1)=x$.

Exercise 3.

Let $\lambda = 2$, $\mu = 1$ and consider the stochastic differential equation

$$\begin{split} dX(t) &= \lambda X(t) dt + \mu X(t) dW(t), \quad 0 \leqslant t \leqslant T, \\ X(0) &= X_0, \end{split} \tag{3.1}$$

and the Euler–Maruyama (EM) method for (3.1)

$$X_{n+1} = X_n + \lambda X_n \Delta t + \mu X_n (W(t_{n+1}) - W(t_n)).$$

The exact solution of (3.1) is given by $X(t) = X_0 \exp((\lambda - \frac{1}{2}\mu^2)t + \mu W(t)).$

Compute a discretized Brownian path over [0,1] with $\delta t = 2^{-8}$ and compare the exact solution (on the discretized path) with the EM method (using the same Brownian path) with $\Delta t = 2^4 \delta t$, $2^2 \delta t$.

Solution

The plot is given in Figure 1.

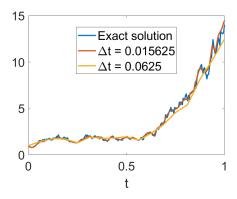


Figure 1: EM approximation of the SDE in Exercise .

Exercise 4.

A numerical method for an SDE

$$\begin{array}{l} dX(t) = f(X(t))dt + g(X(t))dW(t), \quad 0 \leqslant t \leqslant T, \\ X(0) = X_0, \end{array} \tag{4.1}$$

is said to have a strong order of convergence equals to r if there exists a constant C such that

$$\mathbb{E}[\sup_{0\leqslant n\leqslant N}|X_n-X(t_n)|]\leqslant C(\varDelta t)^r,$$

with $N = T/\Delta t$. Consider the following one dimensional SDE

$$dX(t) = \lambda X(t)dt + \mu X(t)dW(t), \quad 0 \leqslant t \leqslant T,$$

$$X(0) = X_0,$$
(4.2)

and set $t_n=T=1$. Consider $\{X_n\}_{n=0}^N$ the Euler-Maruyama approximation and set $e_{\Delta t}^{\rm s}:=\mathbb{E}|X_N-X(T)|$. Verify numerically that the Euler-Maruyama method satisfies $e_{\Delta t}^{\rm s}\leqslant C(\Delta t)^{1/2}$. To evaluate $\mathbb{E}|X_N-X(T)|$ you need to compute $\frac{1}{M}\sum_{i=1}^M|X_N^i-X^i(T)|$, i.e., the average over M realizations of the random variables at time T=1. For that:

- i) take $M=10^5$ independent discretized Brownian path over [0, 1] with $\delta t=2^{-10}$,
- ii) for each path apply EM with $\Delta t = 2^p \delta t$, $1 \leqslant p \leqslant 5$ and store the endpoint error (at t = T),
- iii) take the mean over the error and then report the result $(\Delta t \text{ versus } e_{\Delta t}^{s})$ in a loglog plot.

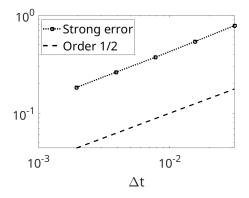


Figure 2: Strong order of convergence 1/2 for the EM method.

Solution

The plot is given in Figure 2.

Exercise 5.

A numerical method for an SDE

$$\begin{split} dX(t) &= f(X(t))dt + g(X(t))dW(t), \quad 0 \leqslant t \leqslant T, \\ X(0) &= X_0, \end{split} \tag{5.1}$$

is said to have a weak order of convergence equals to r if there exists a constant C such that

$$\sup_{0\leqslant n\leqslant N}|\mathbb{E}p(X_n)-\mathbb{E}p(X(t_n))|\leqslant C(\Delta t)^r,$$

with $N = T/\Delta t$ and all sufficiently smooth function p. Consider the following one dimensional SDE

$$\begin{split} dX(t) &= \lambda X(t) dt + \mu X(t) dW(t), \quad 0 \leqslant t \leqslant T, \\ X(0) &= X_0, \end{split} \tag{5.2}$$

with $\lambda=2,\,\mu=1,\,$ and $e^{\mathrm{w}}_{\Delta t}:=|\mathbb{E}(X_N)-\mathbb{E}(X(T))|$ and verify numerically that the Euler-Maruyama method satisfies $e^{\mathrm{w}}_{\Delta t}\leqslant C\Delta t.$

Solution

The plot is given in Figure 3.

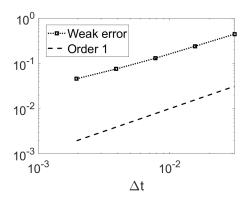


Figure 3: Weak order of convergence 1 for the EM method.