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Exercise 1.

(The maximum principle) Consider a d-dimensional SDE driven by an m-dimensional Brownian motion
with m > d.
dX, =b(X,)dt+o(X,)dB;,, t>0

and its corresponding generator

1 d
522 ax&c Zb

with a;; = Z;Zl 005 Let D C R? be a bounded domain and suppose b, o globally Lipschitz and satisfying

the linear growth bound. Moreover assume a uniformly elliptic on D (i.e. 3X > 0 such that v”a(z)v > A|v|? for
all z € D, v € RY). Let u € C?(D) N C(D). Using the Feynman-Kac formula, show the maximum principle,
ie.

o if Lu > 0, then u(z )<nalzlx)xuforallx€D

o if Lu =0, then minu < u(x) < maxw for all x € D
9D oD

Solution
Let 7 = inf{¢ : Xf’o ¢ D}, where Xf"o is the process that starts in x at time zero, and set f = Lu. Then

u(z) = E[p(X7")] - E[/OTf(X?O)ds}

Hence, if f > 0, then we have
u(x) < E[ (X"TL 0)] < maxu,

If f=0,then f >0 and f <0, hence

minu < u(z) < maxu.
9D dD

Exercise 2.

Consider a d-dimensional SDE driven by an m-dimensional Brownian motion with m > d.

and its corresponding generator
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with a;; = E;Zl o0y Let D C R? be a bounded open domain and suppose b, o globally Lipschitz and

satisfying the linear growth bound. Moreover assume a uniformly elliptic on D (i.e. 3X > 0 such that
vla(x)v > Mo|? for all z € D, v € R?).



1)

2)
3)

Show that if u € C?(D) N C(D) is the solution of

{Lu =—1 onD (2.2)

:0’

Uy p

then u has the characterization u(x) = E*(7) where 7 = inf{t : X, ¢ D} and E* denotes expectation
when the process (2.1) starts in = at time zero.

Let {B;}; be a one dimensional Brownian motion and 7 = inf{t : B, ¢ (—1,1)}. Compute E[7].

Let
dX, = o(X,)dB,
XO =Xx
with o globally Lipschitz on R and strictly positive in [0,1]. Let 7 = inf{t : X, ¢ (0,1)} be the exit

time from (0, 1). Show that 7 < co a.s. and compute P(X, = 1) (notice that this probability does not
depend on o).

(2.3)

Solution

1)
2)

Just apply the Feynman-Kac formula, recalling that here ¢ =0,c =0 and f = —1.
Let d = 1 and dX; = dB; then (2.2) becomes

%u// -1
u(—=1)=u(l)=0
and has the solution u(z) = 1 — z2. Hence E[r] = u(0) = 1.

Under the assumptions on o, (2.2) in (0,1) has a unique solution u € C?((0,1)) N C([0,1]) and is non
negative from maximum principle (see Exercise 1). From point 1) we have that E*[7] = u(z) < oo for all
2 € D, hence 7 is a.s. bounded. To compute P(X, = 1) one has two possibilities. The former consists
to see that u(z) = P(X, = 1) is solution of

(2.4)

%(72(£E>U”(I) =0 0<z<l1
u(0) =0, u(l) =1,

As o%(z) is always strictly positive, the problem is equivalent to u” = 0 with the above boundary
condition and, hence, its solution does not depend on the diffusion. Therefore, the solution is u(x) =
PX,.=1)=u.

Otherwise, one could have notice that
tAT
Xyo=at [ o(X,)aB,
0

is a martingale. Therefore E*[X,,,] = . As |X;,,| < 1, then we can use Lebesgue’s theorem and passing
to the limit as t — +o00 one gets © = E*[X]. As X can have values 0 or 1, we get P(X,=1) = z.

Exercise 3.

Let A =2, u =1 and consider the stochastic differential equation

AX(t) = AX(t)dt + pX ()dW (1), 0<t<T,
X(O) = XO?



and the Euler-Maruyama (EM) method for (3.1)
Xni1 =X +AX, At + ,an(W<tn+1) —W(t,)).

The exact solution of (3.1) is given by X (t) = X exp((A — %uz)t + uW(t)).
Compute a discretized Brownian path over [0,1] with 6 = 278 and compare the exact solution (on the
discretized path) with the EM method (using the same Brownian path) with At = 245t, 225¢.

Solution
The plot is given in Figure 1.
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Figure 1: EM approximation of the SDE in Exercise .

Exercise 4.

A numerical method for an SDE

dX() = f(X(0)dt + g(X(O)dW(t), 0<t<T,

X(0) = X, (4.1)
is said to have a strong order of convergence equals to r if there exists a constant C' such that
E[ sup |X, — X(t,)]] < C(AY)",
0<n<N
with N =T /At. Consider the following one dimensional SDE
dX(t) = XX (t)dt + uX (&) dW(t), 0<t<T, (4.2)

X(O) = XO7

and set t, = T = 1. Consider {X,,} ; the Euler-Maruyama approximation and set €%, := E| Xy — X(T)|.
Verify numerically that the Euler-Maruyama method satisfies %, < C(At)Y/2. To evaluate E| Xy — X(T)]
you need to compute Ai/[ Zf\il | X% — X¥(T)|, i.e., the average over M realizations of the random variables at
time T' = 1. For that:

i) take M = 10° independent discretized Brownian path over [0,1] with §t = 2710,
i1) for each path apply EM with At = 2Pdt, 1 < p < 5 and store the endpoint error (at t = T),
#i7) take the mean over the error and then report the result (At versus ¢€5,) in a loglog plot.
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Figure 2: Strong order of convergence 1/2 for the EM method.

Solution
The plot is given in Figure 2.

Exercise 5.

A numerical method for an SDE

dX(t) = f(X(t))dt +g(X(1)dW(t), 0<t<T,

X(0) = X, (5.1)
is said to have a weak order of convergence equals to r if there exists a constant C' such that
OEEENIEP(Xn) —Ep(X(t,))] < C(AL)",
with N =T/ At and all sufficiently smooth function p. Consider the following one dimensional SDE
dX(t) = AX(t)dt + uX(t)dW(t), 0<t<T, (5.2)

X(O) - XO?

with A =2, p =1, and €Y, := |E(Xy) — E(X(T))| and verify numerically that the Euler-Maruyama method
satisfies ey, < C At.

Solution
The plot is given in Figure 3.
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Figure 3: Weak order of convergence 1 for the EM method.




	Exercise 1. 
	Exercise 2. 
	Exercise 3. 
	Exercise 4. 
	Exercise 5. 

